Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fast ribozyme cleavage releases transcripts from RNA polymerase II and aborts co-transcriptional pre-mRNA processing

Abstract

We investigated whether a continuous transcript is necessary for co-transcriptional pre-mRNA processing. Cutting an intron with the fast-cleaving hepatitis δ ribozyme, but not the slower hammerhead, inhibited splicing. Therefore, exon tethering to RNA polymerase II (Pol II) cannot rescue splicing of a transcript severed by a ribozyme that cleaves rapidly relative to the rate of splicing. Ribozyme cutting also released cap-binding complex (CBC) from the gene, suggesting that exon 1 is not tethered. Unexpectedly, cutting within exons inhibited splicing of distal introns, where exon definition is not affected, probably owing to disruption of the interactions with the CBC and the Pol II C-terminal domain that facilitate splicing. Ribozyme cutting within the mRNA also inhibited 3′ processing and transcription termination. We propose that damaging the nascent transcript aborts pre-mRNA processing and that this mechanism may help to prevent association of processing factors with Pol II that is not productively engaged in transcription.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ribozyme cleavage in globin exon 1 or 2 inhibits splicing of introns 1 and 2 and 3′ end processing.
Figure 2: Ribozyme cleavage in exon 2 releases CBC from the gene.
Figure 3: Hepatitis δ but not hammerhead ribozyme cleavage in intron 2 inhibits splicing.
Figure 4: Hepatitis δ ribozyme cleavage in introns inhibits mRNA processing, protein expression and RNA editing.
Figure 5: Ribozyme cleavage in exon 3 inhibits splicing independently of effects on exon definition.
Figure 6: Inhibition of poly(A) site cleavage and transcription termination by ribozyme cleavage in exon 3.

Similar content being viewed by others

References

  1. Phatnani, H.P. & Greenleaf, A.L. Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev. 20, 2922–2936 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Bentley, D.L. Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors. Curr. Opin. Cell Biol. 17, 251–256 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Hirose, Y. & Manley, J.L. RNA polymerase II and the integration of nuclear events. Genes Dev. 14, 1415–1429 (2000).

    CAS  PubMed  Google Scholar 

  4. Ryman, K., Fong, N., Bratt, E., Bentley, D.L. & Ohman, M. The C-terminal domain of RNA Pol II helps ensure that editing precedes splicing of the GluR-B transcript. RNA 13, 1071–1078 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kaneko, S. & Manley, J.L. The mammalian RNA polymerase II C-terminal domain interacts with RNA to suppress transcription-coupled 3′ end formation. Mol. Cell 20, 91–103 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Mortillaro, M.J. et al. A hyperphosphorylated form of the large subunit of RNA polymerase II is associated with splicing complexes and the nuclear matrix. Proc. Natl. Acad. Sci. USA 93, 8253–8257 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Das, R. et al. SR proteins function in coupling RNAP II transcription to pre-mRNA splicing. Mol. Cell 26, 867–881 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Ujvári, A. & Luse, D.S. Newly initiated RNA encounters a factor involved in splicing immediately upon emerging from within RNA polymerase II. J. Biol. Chem. 279, 49773–49779 (2004).

    Article  PubMed  Google Scholar 

  9. Keen, N.J., Churcher, M.J. & Karn, J. Transfer of Tat and release of TAR RNA during the activation of the human immunodeficiency virus type-1 transcription elongation complex. EMBO J. 16, 5260–5272 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fong, N. & Bentley, D. Capping, splicing and 3′ processing are independently stimulated by RNA polymerase II: different functions for different segments of the CTD. Genes Dev. 15, 1783–1795 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Houseley, J. & Tollervey, D. The nuclear RNA surveillance machinery: The link between ncRNAs and genome structure in budding yeast? Biochim. Biophys. Acta 1779, 236–246 (2008).

    Google Scholar 

  12. Wong, C.M., Qiu, H., Hu, C., Dong, J. & Hinnebusch, A.G. Yeast cap binding complex impedes recruitment of cleavage factor IA to weak termination sites. Mol. Cell. Biol. 27, 6520–6531 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lejeune, F., Ishigaki, Y., Li, X. & Maquat, L.E. The exon junction complex is detected on CBP80-bound but not eIF4E-bound mRNA in mammalian cells: dynamics of mRNP remodeling. EMBO J. 21, 3536–3545 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Listerman, I., Sapra, A.K. & Neugebauer, K.M. Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells. Nat. Struct. Mol. Biol. 13, 815–822 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Izaurralde, E. et al. A nuclear cap binding protein complex involved in pre-mRNA splicing. Cell 78, 657–668 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Lewis, J.D., Izaurralde, E., Jarmolowski, A., Mcguigan, C. & Mattaj, I.W. A nuclear cap-binding complex facilitates association of U1-SNRNP with the cap-proximal 5′ splice-site. Genes Dev. 10, 1683–1698 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Görnemann, J., Kotovic, K.M., Hujer, K. & Neugebauer, K.M. Cotranscriptional spliceosome assembly occurs in a stepwise fashion and requires the cap binding complex. Mol. Cell 19, 53–63 (2005).

    Article  PubMed  Google Scholar 

  18. Flaherty, S.M., Fortes, P., Izaurralde, E., Mattaj, I.W. & Gilmartin, G.M. Participation of the nuclear cap binding complex in pre-mRNA 3′ processing. Proc. Natl. Acad. Sci. USA 94, 11893–11898 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Adamson, T.E., Shutt, D.C. & Price, D.H. Functional coupling of cleavage and polyadenylation with transcription of mRNA. J. Biol. Chem. 280, 32262–32271 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Rigo, F., Kazerouninia, A., Nag, A. & Martinson, H.G. The RNA tether from the poly(A) signal to the polymerase mediates coupling of transcription to cleavage and polyadenylation. Mol. Cell 20, 733–745 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Dye, M.J., Gromak, N. & Proudfoot, N.J. Exon tethering in transcription by RNA polymerase II. Mol. Cell 21, 849–859 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Lacadie, S.A., Tardiff, D.F., Kadener, S. & Rosbash, M. In vivo commitment to yeast cotranscriptional splicing is sensitive to transcription elongation mutants. Genes Dev. 20, 2055–2066 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim, Y.K. & Kim, V.N. Processing of intronic microRNAs. EMBO J. 26, 775–783 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Morlando, M. et al. Primary microRNA transcripts are processed co-transcriptionally. Nat. Struct. Mol. Biol. 15, 902–909 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Anderson, K. & Moore, M.J. Bimolecular exon ligation by the human spliceosome. Science 276, 1712–1716 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. West, S., Proudfoot, N.J. & Dye, M.J. Molecular dissection of mammalian RNA polymerase II transcriptional termination. Mol. Cell 29, 600–610 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Berget, S.M. Exon recognition in vertebrate splicing. J. Biol. Chem. 270, 2411–2414 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. O'Mullane, L. & Eperon, I.C. The pre-mRNA 5′ cap determines whether U6 small nuclear RNA succeeds U1 small nuclear ribonucleoprotein particle at 5′ splice sites. Mol. Cell. Biol. 18, 7510–7520 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wu, J.Y. & Maniatis, T. Specific interactions between proteins implicated in splice site selection and regulated alternative splicing. Cell 75, 1061–1070 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Lam, B.J. & Hertel, K.J. A general role for splicing enhancers in exon definition. RNA 8, 1233–1241 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kyburz, A., Friedlein, A., Langen, H. & Keller, W. Direct interactions between subunits of CPSF and the U2 snRNP contribute to the coupling of pre-mRNA 3′ end processing and splicing. Mol. Cell 23, 195–205 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Millevoi, S. et al. An interaction between U2AF 65 and CF Im links the splicing and 3′ end processing machineries. EMBO J. 25, 4854–4864 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rigo, F. & Martinson, H.G. Functional coupling of last-intron splicing and 3′-end processing to transcription in vitro: the poly(A) signal couples to splicing before committing to cleavage. Mol. Cell. Biol. 28, 849–862 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Bird, G., Fong, N., Gatlin, J.C., Farabaugh, S. & Bentley, D.L. Ribozyme cleavage reveals connections between mRNA release from the site of transcription and pre-mRNA processing. Mol. Cell 20, 747–758 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Rosonina, E., Kaneko, S. & Manley, J.L. Terminating the transcript: breaking up is hard to do. Genes Dev. 20, 1050–1056 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Huang, Y. & Carmichael, G.C. Role of polyadenylation in nucleocytoplasmic transport of mRNA. Mol. Cell. Biol. 16, 1534–1542 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Perrotta, A.T., Shih, I. & Been, M.D. Imidazole rescue of a cytosine mutation in a self-cleaving ribozyme. Science 286, 123–126 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Stage-Zimmermann, T.K. & Uhlenbeck, O.C. Hammerhead ribozyme kinetics. RNA 4, 875–889 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zeng, Y. & Cullen, B.R. Sequence requirements for micro RNA processing and function in human cells. RNA 9, 112–123 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pawlicki, J.M. & Steitz, J.A. Primary microRNA transcript retention at sites of transcription leads to enhanced microRNA production. J. Cell Biol. 182, 61–76 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Connelly, S. & Manley, J.L. A functional mRNA polyadenylation signal is required for transcription termination by RNA polymerase II. Genes Dev. 2, 440–452 (1988).

    Article  CAS  PubMed  Google Scholar 

  42. Dye, M.J. & Proudfoot, N.J. Multiple transcript cleavage precedes polymerase release in termination by RNA polymerase II. Cell 105, 669–681 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. de Almeida, S.F. & Carmo-Fonseca, M. The CTD role in cotranscriptional RNA processing and surveillance. FEBS Lett. 582, 1971–1976 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Glover-Cutter, K., Kim, S., Espinosa, J. & Bentley, D.L. RNA polymerase II pauses and associates with pre-mRNA processing factors at both ends of genes. Nat. Struct. Mol. Biol. 15, 71–78 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Bird, G., Zorio, D.A. & Bentley, D.L. RNA polymerase II carboxy-terminal domain phosphorylation is required for cotranscriptional pre-mRNA splicing and 3′-end formation. Mol. Cell. Biol. 24, 8963–8969 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Samarsky, D.A. et al. A small nucleolar RNA:ribozyme hybrid cleaves a nucleolar RNA target in vivo with near-perfect efficiency. Proc. Natl. Acad. Sci. USA 96, 6609–6614 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Khvorova, A., Lescoute, A., Westhof, E. & Jayasena, S.D. Sequence elements outside the hammerhead ribozyme catalytic core enable intracellular activity. Nat. Struct. Biol. 10, 708–712 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by the US National Institutes of Health (NIH) grant GM58613 to D.B. We thank T. Blumenthal, R. Davis, R. Ferguson, J. Underwood, J. Manley, K. Ryman, B. Cullen and S. Chavez for helpful suggestions, E. Izaurralde (Universität Tubingen) for anti-CBP80, B. Cullen (Duke University) for miR21 and miR30 plasmids, J. Lykke-Andersen (University of Colorado) for Upf1 and PM-Scl75 plasmids, and the University of Colorado Health Sciences Center Cancer Center sequencing facility.

Author information

Authors and Affiliations

Authors

Contributions

N.F., M.O. and D.L.B. designed experiments; N.F. performed the experiments, except the RNA editing analysis in Figure 4c, which was done by M.O.; D.L.B. wrote the manuscript.

Corresponding author

Correspondence to David L Bentley.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Tables 1–3 (PDF 1986 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fong, N., Öhman, M. & Bentley, D. Fast ribozyme cleavage releases transcripts from RNA polymerase II and aborts co-transcriptional pre-mRNA processing. Nat Struct Mol Biol 16, 916–922 (2009). https://doi.org/10.1038/nsmb.1652

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1652

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing