Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the RAG1 nonamer binding domain with DNA reveals a dimer that mediates DNA synapsis

Abstract

The products of recombination-activating genes RAG1 and RAG2 mediate the assembly of antigen receptor genes during lymphocyte development in a process known as V(D)J recombination. Lack of structural information for the RAG proteins has hindered mechanistic studies of this reaction. We report here the crystal structure of an essential DNA binding domain of the RAG1 catalytic core bound to its nonamer DNA recognition motif. The RAG1 nonamer binding domain (NBD) forms a tightly interwoven dimer that binds and synapses two nonamer elements, with each NBD making contact with both DNA molecules. Biochemical and biophysical experiments confirm that the two nonamers are in close proximity in the RAG1/2–DNA synaptic complex and demonstrate the functional importance of the protein-DNA contacts revealed in the structure. These findings reveal a previously unsuspected function for the NBD in DNA synapsis and have implications for the regulation of DNA binding and cleavage by RAG1 and RAG2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of RAG-mediated DNA binding and cleavage.
Figure 2: Electron density maps of DNA in the native and 56DNA crystals.
Figure 3: Structure of the RAG1 NBD-DNA complex.
Figure 4: Important protein-DNA and protein-protein contacts in the NBD-DNA crystal structure.
Figure 5: NBD-DNA contacts are important for DNA binding and hairpin formation.
Figure 6: Detection of nonamer synapsis using FRET.
Figure 7: FRET analysis of the DNA and protein requirements for nonamer synapsis.
Figure 8: Structural comparisons of the RAG1 NBD with the DBDs of Hin and Hermes.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Schatz, D.G., Oettinger, M.A. & Baltimore, D. The V(D)J recombination activating gene, RAG-1. Cell 59, 1035–1048 (1989).

    Article  CAS  Google Scholar 

  2. Oettinger, M.A., Schatz, D.G., Gorka, C. & Baltimore, D. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 248, 1517–1523 (1990).

    CAS  PubMed  Google Scholar 

  3. Sawchuk, D.J. et al. V(D)J recombination: modulation of RAG1 and RAG2 cleavage activity on 12/23 substrates by whole cell extract and DNA-bending proteins. J. Exp. Med. 185, 2025–2032 (1997).

    Article  CAS  Google Scholar 

  4. van Gent, D.C., Hiom, K., Paull, T.T. & Gellert, M. Stimulation of V(D)J cleavage by high mobility group proteins. EMBO J. 16, 2665–2670 (1997).

    Article  CAS  Google Scholar 

  5. Tonegawa, S. Somatic generation of antibody diversity. Nature 302, 575–581 (1983).

    Article  CAS  Google Scholar 

  6. McBlane, J.F. et al. Cleavage at a V(D)J recombination signal requires only RAG1 and RAG2 proteins and occurs in two steps. Cell 83, 387–395 (1995).

    Article  CAS  Google Scholar 

  7. van Gent, D.C., Mizuuchi, K. & Gellert, M. Similarities between initiation of V(D)J recombination and retroviral integration. Science 271, 1592–1594 (1996).

    Article  CAS  Google Scholar 

  8. Hiom, K. & Gellert, M. Assembly of a 12/23 paired signal complex: a critical control point in V(D)J recombination. Mol. Cell 1, 1011–1019 (1998).

    Article  CAS  Google Scholar 

  9. Jones, J.M. & Gellert, M. Ordered assembly of the V(D)J synaptic complex ensures accurate recombination. EMBO J. 21, 4162–4171 (2002).

    Article  CAS  Google Scholar 

  10. Mundy, C.L., Patenge, N., Matthews, A.G. & Oettinger, M.A. Assembly of the RAG1/RAG2 synaptic complex. Mol. Cell. Biol. 22, 69–77 (2002).

    Article  CAS  Google Scholar 

  11. van Gent, D.C., Ramsden, D.A. & Gellert, M. The RAG1 and RAG2 proteins establish the 12/23 rule in V(D)J recombination. Cell 85, 107–113 (1996).

    Article  CAS  Google Scholar 

  12. Eastman, Q.M., Leu, T.M. & Schatz, D.G. Initiation of V(D)J recombination in vitro obeying the 12/23 rule. Nature 380, 85–88 (1996).

    Article  CAS  Google Scholar 

  13. West, R.B. & Lieber, M.R. The RAG-HMG1 complex enforces the 12/23 rule of V(D)J recombination specifically at the double-hairpin formation step. Mol. Cell. Biol. 18, 6408–6415 (1998).

    Article  CAS  Google Scholar 

  14. Steen, S.B., Gomelsky, L. & Roth, D.B. The 12/23 rule is enforced at the cleavage step of V(D)J recombination in vivo. Genes Cells 1, 543–553 (1996).

    Article  CAS  Google Scholar 

  15. Critchlow, S.E. & Jackson, S.P. DNA end-joining: from yeast to man. Trends Biochem. Sci. 23, 394–398 (1998).

    Article  CAS  Google Scholar 

  16. Fugmann, S.D., Lee, A.I., Shockett, P.E., Villey, I.J. & Schatz, D.G. The RAG proteins and V(D)J recombination: complexes, ends, and transposition. Annu. Rev. Immunol. 18, 495–527 (2000).

    Article  CAS  Google Scholar 

  17. Swanson, P.C. The bounty of RAGs: recombination signal complexes and reaction outcomes. Immunol. Rev. 200, 90–114 (2004).

    Article  CAS  Google Scholar 

  18. Spanopoulou, E. et al. The homeodomain region of Rag-1 reveals the parallel mechanisms of bacterial and V(D)J recombination. Cell 87, 263–276 (1996).

    Article  CAS  Google Scholar 

  19. Difilippantonio, M.J., McMahan, C.J., Eastman, Q.M., Spanopoulou, E. & Schatz, D.G. RAG1 mediates signal sequence recognition and recruitment of RAG2 in V(D)J recombination. Cell 87, 253–262 (1996).

    Article  CAS  Google Scholar 

  20. De, P. & Rodgers, K.K. Putting the pieces together: identification and characterization of structural domains in the V(D)J recombination protein RAG1. Immunol. Rev. 200, 70–82 (2004).

    Article  CAS  Google Scholar 

  21. Landree, M.A., Kale, S.B. & Roth, D.B. Functional organization of single and paired V(D)J cleavage complexes. Mol. Cell. Biol. 21, 4256–4264 (2001).

    Article  CAS  Google Scholar 

  22. Swanson, P.C.A. RAG-1/RAG-2 tetramer supports 12/23-regulated synapsis, cleavage, and transposition of V(D)J recombination signals. Mol. Cell. Biol. 22, 7790–7801 (2002).

    Article  CAS  Google Scholar 

  23. Ciubotaru, M. et al. RAG1-DNA binding in V(D)J recombination. Specificity and DNA-induced conformational changes revealed by fluorescence and CD spectroscopy. J. Biol. Chem. 278, 5584–5596 (2003).

    Article  CAS  Google Scholar 

  24. Bailin, T., Mo, X. & Sadofsky, M.J.A. RAG1 and RAG2 tetramer complex is active in cleavage in V(D)J recombination. Mol. Cell. Biol. 19, 4664–4671 (1999).

    Article  CAS  Google Scholar 

  25. Bellon, S.F., Rodgers, K.K., Schatz, D.G., Coleman, J.E. & Steitz, T.A. Crystal structure of the RAG1 dimerization domain reveals multiple zinc-binding motifs including a novel zinc binuclear cluster. Nat. Struct. Biol. 4, 586–591 (1997).

    Article  CAS  Google Scholar 

  26. Matthews, A.G. et al. RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination. Nature 450, 1106–1110 (2007).

    Article  CAS  Google Scholar 

  27. Feng, J.A., Johnson, R.C. & Dickerson, R.E. Hin recombinase bound to DNA: the origin of specificity in major and minor groove interactions. Science 263, 348–355 (1994).

    Article  CAS  Google Scholar 

  28. Banerjee-Basu, S. & Baxevanis, A.D. The DNA-binding region of RAG 1 is not a homeodomain. Genome Biol. 3, I1004 (2002).

    Article  Google Scholar 

  29. Aidinis, V. et al. The RAG1 homeodomain recruits HMG1 and HMG2 to facilitate recombination signal sequence binding and to enhance the intrinsic DNA-bending activity of RAG1–RAG2. Mol. Cell. Biol. 19, 6532–6542 (1999).

    Article  CAS  Google Scholar 

  30. Swanson, P.C. & Desiderio, S.V. (D)J recombination signal recognition: distinct, overlapping DNA-protein contacts in complexes containing RAG1 with and without RAG2. Immunity 9, 115–125 (1998).

    Article  CAS  Google Scholar 

  31. Aravind, L. & Landsman, D. AT-hook motifs identified in a wide variety of DNA-binding proteins. Nucleic Acids Res. 26, 4413–4421 (1998).

    Article  CAS  Google Scholar 

  32. Cowell, L.G., Davila, M., Yang, K., Kepler, T.B. & Kelsoe, G. Prospective estimation of recombination signal efficiency and identification of functional cryptic signals in the genome by statistical modeling. J. Exp. Med. 197, 207–220 (2003).

    Article  CAS  Google Scholar 

  33. Nagawa, F. et al. Footprint analysis of the RAG protein recombination signal sequence complex for V(D)J type recombination. Mol. Cell. Biol. 18, 655–663 (1998).

    Article  CAS  Google Scholar 

  34. Ramsden, D.A., Baetz, K. & Wu, G.E. Conservation of sequence in recombination signal sequence spacers. Nucleic Acids Res. 22, 1785–1796 (1994).

    Article  CAS  Google Scholar 

  35. Akamatsu, Y. & Oettinger, M.A. Distinct roles of RAG1 and RAG2 in binding the V(D)J recombination signal sequences. Mol. Cell. Biol. 18, 4670–4678 (1998).

    Article  CAS  Google Scholar 

  36. Huye, L.E., Purugganan, M.M., Jiang, M.M. & Roth, D.B. Mutational analysis of all conserved basic amino acids in RAG-1 reveals catalytic, step arrest, and joining-deficient mutants in the V(D)J recombinase. Mol. Cell. Biol. 22, 3460–3473 (2002).

    Article  CAS  Google Scholar 

  37. Feeney, A.J., Goebel, P. & Espinoza, C.R. Many levels of control of V gene rearrangement frequency. Immunol. Rev. 200, 44–56 (2004).

    Article  CAS  Google Scholar 

  38. Ciubotaru, M., Kriatchko, A.N., Swanson, P.C., Bright, F.V. & Schatz, D.G. Fluorescence resonance energy transfer analysis of recombination signal sequence configuration in the RAG1/2 synaptic complex. Mol. Cell. Biol. 27, 4745–4758 (2007).

    Article  CAS  Google Scholar 

  39. Swanson, P.C. The DDE motif in RAG-1 is contributed in trans to a single active site that catalyzes the nicking and transesterification steps of V(D)J recombination. Mol. Cell. Biol. 21, 449–458 (2001).

    Article  CAS  Google Scholar 

  40. Zhou, L. et al. Transposition of hAT elements links transposable elements and V(D)J recombination. Nature 432, 995–1001 (2004).

    Article  CAS  Google Scholar 

  41. Hickman, A.B. et al. Molecular architecture of a eukaryotic DNA transposase. Nat. Struct. Mol. Biol. 12, 715–721 (2005).

    Article  CAS  Google Scholar 

  42. Grundy, G.J., Hesse, J.E. & Gellert, M. Requirements for DNA hairpin formation by RAG1/2. Proc. Natl. Acad. Sci. USA 104, 3078–3083 (2007).

    Article  CAS  Google Scholar 

  43. Lu, C.P., Sandoval, H., Brandt, V.L., Rice, P.A. & Roth, D.B. Amino acid residues in Rag1 crucial for DNA hairpin formation. Nat. Struct. Mol. Biol. 13, 1010–1015 (2006).

    Article  CAS  Google Scholar 

  44. Santagata, S., Villa, A., Sobacchi, C., Cortes, P. & Vezzoni, P. The genetic and biochemical basis of Omenn syndrome. Immunol. Rev. 178, 64–74 (2000).

    Article  CAS  Google Scholar 

  45. Eastman, Q.M. & Schatz, D.G. Nicking is asynchronous and stimulated by synapsis in 12/23 rule-regulated V(D)J cleavage. Nucleic Acids Res. 25, 4370–4378 (1997).

    Article  CAS  Google Scholar 

  46. Yu, K. & Lieber, M.R. The nicking step in V(D)J recombination is independent of synapsis: implications for the immune repertoire. Mol. Cell. Biol. 20, 7914–7921 (2000).

    Article  CAS  Google Scholar 

  47. Ramsden, D.A., McBlane, J.F., van Gent, D.C. & Gellert, M. Distinct DNA sequence and structure requirements for the two steps of V(D)J recombination signal cleavage. EMBO J. 15, 3197–3206 (1996).

    Article  CAS  Google Scholar 

  48. Swanson, P.C. Fine structure and activity of discrete RAG-HMG complexes on V(D)J recombination signals. Mol. Cell. Biol. 22, 1340–1351 (2002).

    Article  CAS  Google Scholar 

  49. Swanson, P.C. & Desiderio, S. RAG-2 promotes heptamer occupancy by RAG-1 in the assembly of a V(D)J initiation complex. Mol. Cell. Biol. 19, 3674–3683 (1999).

    Article  CAS  Google Scholar 

  50. Bergeron, S., Madathiparambil, T. & Swanson, P.C. Both high mobility group (HMG)-boxes and the acidic tail of HMGB1 regulate recombination-activating gene (RAG)-mediated recombination signal synapsis and cleavage in vitro. J. Biol. Chem. 280, 31314–31324 (2005).

    Article  CAS  Google Scholar 

  51. Dai, Y. et al. Determinants of HMGB proteins required to promote RAG1/2-recombination signal sequence complex assembly and catalysis during V(D)J recombination. Mol. Cell. Biol. 25, 4413–4425 (2005).

    Article  CAS  Google Scholar 

  52. Mouw, K.W. et al. Architecture of a serine recombinase-DNA regulatory complex. Mol. Cell 30, 145–155 (2008).

    Article  CAS  Google Scholar 

  53. Bergeron, S., Anderson, D.K. & Swanson, P.C. RAG and HMGB1 proteins: purification and biochemical analysis of recombination signal complexes. Methods Enzymol. 408, 511–528 (2006).

    Article  CAS  Google Scholar 

  54. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  55. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  56. Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).

    Article  CAS  Google Scholar 

  57. Terwilliger, T. SOLVE and RESOLVE: automated structure solution, density modification and model building. J. Synchrotron Radiat. 11, 49–52 (2004).

    Article  CAS  Google Scholar 

  58. Terwilliger, T.C. Maximum likelihood density modification. Acta Crystallogr. D Biol. Crystallogr. 56, 965–972 (2000).

    Article  CAS  Google Scholar 

  59. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  60. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the staff at Advanced Photon Source beamline 24ID and National Synchrotron Light Source beamline X25. We are grateful to N. Grindley, L. Regan and A. Miranker for the use of their spectrofluorometers. We also thank W. Eliason and J. Kavran of the Steitz laboratory, S. Unniraman of the Schatz laboratory and the staff of the Center for Structural Biology Core Facility at Yale for their help. This work was supported by the US National Institutes of Health grant AI32524 to D.G.S., training grant T32 GM08283 and a Gershon Fellowship to F.F.Y. This work was also funded by the Howard Hughes Medical Institute (to D.G.S. and T.A.S.).

Author information

Authors and Affiliations

Authors

Contributions

F.F.Y. performed all of the experiments shown; F.F.Y. crystallized the complex and solved the structure with help from S.B., S.K. and C.A.I.; S.B. contributed to the structure refinement and making of Figure 2; all other figures were generated by F.F.Y.; M.C. contributed to the design and interpretation of FRET assays; T.A.S. contributed to experimental design and analysis of the structure; D.G.S. contributed to experimental design and data interpretation; F.F.Y. and D.G.S. wrote the manuscript, which all authors commented on.

Corresponding author

Correspondence to David G Schatz.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Table 1 (PDF 6176 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, F., Bailey, S., Innis, C. et al. Structure of the RAG1 nonamer binding domain with DNA reveals a dimer that mediates DNA synapsis. Nat Struct Mol Biol 16, 499–508 (2009). https://doi.org/10.1038/nsmb.1593

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1593

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing