Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nucleosomes can invade DNA territories occupied by their neighbors

Abstract

Nucleosomes are the fundamental subunits of eukaryotic chromatin. They are not static entities, but can undergo a number of dynamic transitions, including spontaneous repositioning along DNA. As nucleosomes are spaced close together within genomes, it is likely that on occasion they approach each other and may even collide. Here we have used a dinucleosomal model system to show that the 147-base-pair (bp) DNA territories of two nucleosomes can overlap extensively. In the situation of an overlap by 44 bp or 54 bp, one histone dimer is lost and the resulting complex can condense to form a compact single particle. We propose a pathway in which adjacent nucleosomes promote DNA unraveling as they approach each other and that this permits their 147-bp territories to overlap, and we suggest that these events may represent early steps in a pathway for nucleosome removal via collision.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chromatin assembly on defined dinucleosomal templates.
Figure 2: Measuring the histone content of dimeric chromatin particles.
Figure 3: AFM imaging of dinucleosomes.
Figure 4: Helical phasing is required for the condensation of overlapping dinucleosomes.
Figure 5: Formation of overlapping nucleosomes as a result of repositioning.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. van Holde, K.E. Chromatin, (Springer-Verlag, New York, 1988).

    Google Scholar 

  2. Groth, A., Rocha, W., Verreault, A. & Almouzni, G. Chromatin challenges during DNA replication and repair. Cell 128, 721–733 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Workman, J.L. Nucleosome displacement in transcription. Genes Dev. 20, 2009–2017 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Kornberg, R.D. & Lorch, Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98, 285–294 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Davey, C.A., Sargent, D.F., Luger, K., Maeder, A.W. & Richmond, T.J. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution. J. Mol. Biol. 319, 1097–1113 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Flaus, A., Luger, K., Tan, S. & Richmond, T.J. Mapping nucleosome position at single base-pair resolution by using site-directed hydroxyl radicals. Proc. Natl. Acad. Sci. USA 93, 1370–1375 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Widlund, H.R. et al. Identification and characterization of genomic nucleosome-positioning sequences. J. Mol. Biol. 267, 807–817 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Roth, S.Y., Dean, A. & Simpson, R.T. Yeast α2 repressor positions nucleosomes in TRP1/ARS1 chromatin. Mol. Cell. Biol. 10, 2247–2260 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Strauss, F. & Varshavsky, A. A protein binds to a satellite DNA repeat at three specific sites that would be brought into mutual proximity by DNA folding in the nucleosome. Cell 37, 889–901 (1984).

    Article  CAS  PubMed  Google Scholar 

  10. Pazin, M.J., Bhargava, P., Geiduschek, E.P. & Kadonaga, J.T. Nucleosome mobility and the maintenance of nucleosome positioning. Science 276, 809–812 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Polach, K.J. & Widom, J. Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation. J. Mol. Biol. 254, 130–149 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Li, G., Levitus, M., Bustamante, C. & Widom, J. Rapid spontaneous accessibility of nucleosomal DNA. Nat. Struct. Mol. Biol. 12, 46–53 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Ferreira, H., Somers, J., Webster, R., Flaus, A. & Owen-Hughes, T. Histone tails and the H3 αN helix regulate nucleosome mobility and stability. Mol. Cell. Biol. 27, 4037–4048 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schalch, T., Duda, S., Sargent, D.F. & Richmond, T.J. X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature 436, 138–141 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Bancaud, A. et al. Nucleosome chiral transition under positive torsional stress in single chromatin fibers. Mol. Cell 27, 135–147 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Meersseman, G., Pennings, S. & Bradbury, E.M. Mobile nucleosomes—a general behavior. EMBO J. 11, 2951–2959 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thastrom, A. et al. Sequence motifs and free energies of selected natural and non-natural nucleosome positioning DNA sequences. J. Mol. Biol. 288, 213–229 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Dorigo, B., Schalch, T., Bystricky, K. & Richmond, T.J. Chromatin fiber folding: requirement for the histone H4 N-terminal tail. J. Mol. Biol. 327, 85–96 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Richard-Foy, H. & Hager, G.L. Sequence-specific positioning of nucleosomes over the steroid-inducible MMTV promoter. EMBO J. 6, 2321–2328 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ulyanova, N.P. & Schnitzler, G.R. Human SWI/SNF generates abundant, structurally altered dinucleosomes on polynucleosomal templates. Mol. Cell. Biol. 25, 11156–11170 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li, G. & Widom, J. Nucleosomes facilitate their own invasion. Nat. Struct. Mol. Biol. 11, 763–769 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Segal, E. et al. A genomic code for nucleosome positioning. Nature 442, 772–778 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yuan, G.C. et al. Genome-scale identification of nucleosome positions in S. cerevisiae. Science 309, 626–630 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Johnson, S.M., Tan, F.J., McCullough, H.L., Riordan, D.P. & Fire, A.Z. Flexibility and constraint in the nucleosome core landscape of Caenorhabditis elegans chromatin. Genome Res. 16, 1505–1516 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Albert, I. et al. Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. Nature 446, 572–576 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Lee, W. et al. A high-resolution atlas of nucleosome occupancy in yeast. Nat. Genet. 39, 1235–1244 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Fatemi, M. et al. Footprinting of mammalian promoters: use of a CpG DNA methyltransferase revealing nucleosome positions at a single molecule level. Nucleic Acids Res. 33, e176 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Allen, M.J. et al. Atomic force microscope measurements of nucleosome cores assembled along defined DNA sequences. Biochemistry 32, 8390–8396 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Pisano, S., Pascucci, E., Cacchione, S., De Santis, P. & Savino, M. AFM imaging and theoretical modeling studies of sequence-dependent nucleosome positioning. Biophys. Chem. 124, 81–89 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. van Holde, K. & Zlatanova, J. The nucleosome core particle: does it have structural and physiologic relevance? Bioessays 21, 776–780 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Thoma, F., Koller, T. & Klug, A. Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructure of chromatin. J. Cell Biol. 83, 403–427 (1979).

    Article  CAS  PubMed  Google Scholar 

  32. Polach, K.J. & Widom, J. A model for the cooperative binding of eukaryotic regulatory proteins to nucleosomal target sites. J. Mol. Biol. 258, 800–812 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Butler, P.J.G. & Thomas, J.O. Dinucleosomes show compaction by ionic strength, consistent with bending of linker DNA. J. Mol. Biol. 281, 401–407 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Alilat, M., Sivolob, A., Revet, B. & Prunell, A. Nucleosome dynamics IV. Protein and DNA contributions in the chiral transition of the tetrasome, the histone (H3–H4)2 tetramer-DNA particle. J. Mol. Biol. 291, 815–841 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Tomschik, M., Karymov, M.A., Zlatanova, J. & Leuba, S.H. The archaeal histone-fold protein HMf organizes DNA into bona fide chromatin fibers. Structure 9, 1201–1211 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Fan, H.Y., He, X., Kingston, R.E. & Narlikar, G.J. Distinct strategies to make nucleosomal DNA accessible. Mol. Cell 11, 1311–1322 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Flaus, A. & Owen-Hughes, T. Dynamic properties of nucleosomes during thermal and ATP-driven mobilization. Mol. Cell. Biol. 23, 7767–7779 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kassabov, S.R., Zhang, B., Persinger, J. & Bartholomew, B. SWI/SNF unwraps, slides and rewraps the nucleosome. Mol. Cell 11, 391–403 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Lorch, Y., Zhang, M. & Kornberg, R.D. RSC unravels the nucleosome. Mol. Cell 7, 89–95 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Ulyanova, N.P. & Schnitzler, G.R. Inverted factor access and slow reversion characterize SWI/SNF-altered nucleosome dimers. J. Biol. Chem. 282, 1018–1028 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Schnitzler, G.R. et al. Direct imaging of human SWI/SNF-remodeled mono- and polynucleosomes by atomic force microscopy employing carbon nanotube tips. Mol. Cell. Biol. 21, 8504–8511 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bruno, M. et al. Histone H2A/H2B dimer exchange by ATP-dependent chromatin remodeling activities. Mol. Cell 12, 1599–1606 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Vicent, G.P. et al. DNA instructed displacement of histones H2A and H2B at an inducible promoter. Mol. Cell 16, 439–452 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Cairns, B.R. Chromatin remodeling: insights and intrigue from single-molecule studies. Nat. Struct. Mol. Biol. 14, 989–996 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dechassa, M.L. et al. Architecture of the SWI/SNF-nucleosome complex. Mol. Cell. Biol. 28, 6010–6021 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chaban, Y. et al. Structure of a RSC-nucleosome complex and insights into chromatin remodeling. Nat. Struct. Mol. Biol. 15, 1272–1277 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Boeger, H., Griesenbeck, J. & Kornberg, R.D. Nucleosome retention and the stochastic nature of promoter chromatin remodeling for transcription. Cell 133, 716–726 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lowary, P.T. & Widom, J. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J. Mol. Biol. 276, 19–42 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Flaus, A. & Richmond, T.J. Positioning and stability of nucleosomes on MMTV 3′ LTR sequences. J. Mol. Biol. 275, 427–441 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Luger, K., Rechsteiner, T.J. & Richmond, T.J. Expression and purification of recombinant histones and nucleosome reconstitution. Methods Mol. Biol. 119, 1–16 (1999).

    CAS  PubMed  Google Scholar 

  51. Ferreira, H., Flaus, A. & Owen-Hughes, T. Histone modifications influence the action of Snf2 family remodelling enzymes by different mechanisms. J. Mol. Biol. 374, 563–579 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank D. Lamont and K. Beattie for assistance with MS and D. Norman for assistance with modeling. We thank members of the T.O.-H. laboratory for valuable suggestions. M.d.J. and J.v.N. were financially supported by the 'Netherlands Organisation for Scientific Research' (NWO) and the European Science Foundation (ESF). M.E. (Studentship), A.F. and T.O.-H. were funded by the Wellcome Trust (Senior Fellowship 064414).

Author information

Authors and Affiliations

Authors

Contributions

M.E. carried out most of the experimental work and data analysis; M.d.J. and J.v.N. carried out AFM and associated data analysis; A.F. performed the assays in Figure 5; R.B. assisted with the modeling of the dinucleosome structure; M.E. and T.O.-H. designed the experiments and wrote the manuscript.

Corresponding author

Correspondence to Tom Owen-Hughes.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 1467 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engeholm, M., de Jager, M., Flaus, A. et al. Nucleosomes can invade DNA territories occupied by their neighbors. Nat Struct Mol Biol 16, 151–158 (2009). https://doi.org/10.1038/nsmb.1551

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1551

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing