Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

An equivalent metal ion in one- and two-metal-ion catalysis

Abstract

Nucleotidyl-transfer enzymes, which synthesize, degrade and rearrange DNA and RNA, often depend on metal ions for catalysis. All DNA and RNA polymerases, MutH-like or RNase H–like nucleases and recombinases, and group I introns seem to require two divalent cations to form a complete active site. The two-metal-ion mechanism has been proposed to orient the substrate, facilitate acid-base catalysis and allow catalytic specificity to exceed substrate binding specificity attributable to the stringent metal-ion (Mg2+ in particular) coordination. Not all nucleotidyl-transfer enzymes use two metal ions for catalysis, however. The ββα-Me and HUH nucleases depend on a single metal ion in the active site for the catalysis. All of these one- and two metal ion–dependent enzymes generate 5′-phosphate and 3′-OH products. Structural and mechanistic comparisons show that these seemingly unrelated nucleotidyl-transferases share a functionally equivalent metal ion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A diagram of two-metal-ion catalysis by RNase H.
Figure 2: Examples of one metal ion–dependent nucleases.
Figure 3: Comparison of the active site of RNase H and TraI in stereo view.

Similar content being viewed by others

References

  1. Pelletier, H., Sawaya, M.R., Kumar, A., Wilson, S.H. & Kraut, J. Structures of ternary complexes of rat DNA polymerase β, a DNA template-primer, and ddCTP. Science 264, 1891–1903 (1994).

    Article  CAS  Google Scholar 

  2. Doublie, S., Tabor, S., Long, A.M., Richardson, C.C. & Ellenberger, T. Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution. Nature 391, 251–258 (1998).

    Article  CAS  Google Scholar 

  3. Steitz, T.A. A mechanism for all polymerases. Nature 391, 231–232 (1998).

    Article  CAS  Google Scholar 

  4. Beese, L.S. & Steitz, T.A. Structural basis for the 3′-5′ exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. EMBO J. 10, 25–33 (1991).

    Article  CAS  Google Scholar 

  5. Lee, J.Y. et al. MutH complexed with hemi- and unmethylated DNAs: coupling base recognition and DNA cleavage. Mol. Cell 20, 155–166 (2005).

    Article  CAS  Google Scholar 

  6. Nowotny, M. & Yang, W. Stepwise analyses of metal ions in RNase H catalysis from substrate destabilization to product release. EMBO J. 25, 1924–1933 (2006).

    Article  CAS  Google Scholar 

  7. Stahley, M.R. & Strobel, S.A. RNA splicing: group I intron crystal structures reveal the basis of splice site selection and metal ion catalysis. Curr. Opin. Struct. Biol. 16, 319–326 (2006).

    Article  CAS  Google Scholar 

  8. Yang, W., Lee, J.Y. & Nowotny, M. Making and breaking nucleic acids: two-Mg2+-ion catalysis and substrate specificity. Mol. Cell 22, 5–13 (2006).

    Article  CAS  Google Scholar 

  9. Sowadski, J.M., Handschumacher, M.D., Murthy, H.M., Foster, B.A. & Wyckoff, H.W. Refined structure of alkaline phosphatase from Escherichia coli at 2.8 Å resolution. J. Mol. Biol. 186, 417–433 (1985).

    Article  CAS  Google Scholar 

  10. Freemont, P.S., Friedman, J.M., Beese, L.S., Sanderson, M.R. & Steitz, T.A. Cocrystal structure of an editing complex of Klenow fragment with DNA. Proc. Natl. Acad. Sci. USA 85, 8924–8928 (1988).

    Article  CAS  Google Scholar 

  11. Steitz, T.A. & Steitz, J.A. A general two-metal-ion mechanism for catalytic RNA. Proc. Natl. Acad. Sci. USA 90, 6498–6502 (1993).

    Article  CAS  Google Scholar 

  12. Batra, V.K. et al. Magnesium-induced assembly of a complete DNA polymerase catalytic complex. Structure 14, 757–766 (2006).

    Article  CAS  Google Scholar 

  13. Brautigam, C.A., Sun, S., Piccirilli, J.A. & Steitz, T.A. Structures of normal single-stranded DNA and deoxyribo-3′-S-phosphorothiolates bound to the 3′-5′ exonucleolytic active site of DNA polymerase I from Escherichia coli. Biochemistry 38, 696–704 (1999).

    Article  CAS  Google Scholar 

  14. Viadiu, H. & Aggarwal, A.K. Structure of BamHI bound to nonspecific DNA: a model for DNA sliding. Mol. Cell 5, 889–895 (2000).

    Article  CAS  Google Scholar 

  15. Horton, N.C. & Perona, J.J. DNA cleavage by EcoRV endonuclease: two metal ions in three metal ion binding sites. Biochemistry 43, 6841–6857 (2004).

    Article  CAS  Google Scholar 

  16. Nowotny, M. et al. Structure of human RNase H1 complexed with an RNA/DNA hybrid: insight into HIV reverse transcription. Mol. Cell 28, 264–276 (2007).

    Article  CAS  Google Scholar 

  17. Friedhoff, P. et al. A similar active site for non-specific and specific endonucleases. Nat. Struct. Biol. 6, 112–113 (1999).

    Article  CAS  Google Scholar 

  18. Kuhlmann, U.C., Moore, G.R., James, R., Kleanthous, C. & Hemmings, A.M. Structural parsimony in endonuclease active sites: should the number of homing endonuclease families be redefined? FEBS Lett. 463, 1–2 (1999).

    Article  CAS  Google Scholar 

  19. Hsia, K.C., Li, C.L. & Yuan, H.S. Structural and functional insight into sugar-nonspecific nucleases in host defense. Curr. Opin. Struct. Biol. 15, 126–134 (2005).

    Article  CAS  Google Scholar 

  20. Stoddard, B.L. Homing endonuclease structure and function. Q. Rev. Biophys. 38, 49–95 (2005).

    Article  CAS  Google Scholar 

  21. Biertümpfel, C., Yang, W. & Suck, D. Crystal structure of T4 endonuclease VII resolving a Holliday junction. Nature 449, 616–620 (2007).

    Article  Google Scholar 

  22. Meiss, G., Gimadutdinow, O., Friedhoff, P. & Pingoud, A.M. Microtiter-plate assay and related assays for nonspecific endonucleases. Methods Mol. Biol. 160, 37–48 (2001).

    CAS  PubMed  Google Scholar 

  23. Woo, E.J. et al. Structural mechanism for inactivation and activation of CAD/DFF40 in the apoptotic pathway. Mol. Cell 14, 531–539 (2004).

    Article  CAS  Google Scholar 

  24. Mehta, P., Katta, K. & Krishnaswamy, S. HNH family subclassification leads to identification of commonality in the His-Me endonuclease superfamily. Protein Sci. 13, 295–300 (2004).

    Article  CAS  Google Scholar 

  25. Ton-Hoang, B. et al. Transposition of ISHp608, member of an unusual family of bacterial insertion sequences. EMBO J. 24, 3325–3338 (2005).

    Article  Google Scholar 

  26. Barabas, O. et al. Mechanism of IS200/IS605 family DNA transposases: activation and transposon-directed target site selection. Cell 132, 208–220 (2008).

    Article  CAS  Google Scholar 

  27. Koonin, E.V. & Ilyina, T.V. Computer-assisted dissection of rolling circle DNA replication. Biosystems 30, 241–268 (1993).

    Article  CAS  Google Scholar 

  28. Guasch, A. et al. Recognition and processing of the origin of transfer DNA by conjugative relaxase TrwC. Nat. Struct. Biol. 10, 1002–1010 (2003).

    Article  CAS  Google Scholar 

  29. Datta, S., Larkin, C. & Schildbach, J.F. Structural insights into single-stranded DNA binding and cleavage by F factor TraI. Structure 11, 1369–1379 (2003).

    Article  CAS  Google Scholar 

  30. Monzingo, A.F., Ozburn, A., Xia, S., Meyer, R.J. & Robertus, J.D. The structure of the minimal relaxase domain of MobA at 2.1 Å resolution. J. Mol. Biol. 366, 165–178 (2007).

    Article  CAS  Google Scholar 

  31. Hickman, A.B., Ronning, D.R., Kotin, R.M. & Dyda, F. Structural unity among viral origin binding proteins: crystal structure of the nuclease domain of adeno-associated virus Rep. Mol. Cell 10, 327–337 (2002).

    Article  CAS  Google Scholar 

  32. Campos-Olivas, R., Louis, J.M., Clerot, D., Gronenborn, B. & Gronenborn, A.M. The structure of a replication initiator unites diverse aspects of nucleic acid metabolism. Proc. Natl. Acad. Sci. USA 99, 10310–10315 (2002).

    Article  CAS  Google Scholar 

  33. Dyda, F. & Hickman, A.B. A mob of Reps. Structure 11, 1310–1311 (2003).

    Article  CAS  Google Scholar 

  34. Gomis-Ruth, F.X. & Coll, M. Cut and move: protein machinery for DNA processing in bacterial conjugation. Curr. Opin. Struct. Biol. 16, 744–752 (2006).

    Article  Google Scholar 

  35. Larkin, C. et al. Inter- and intramolecular determinants of the specificity of single-stranded DNA binding and cleavage by the F factor relaxase. Structure 13, 1533–1544 (2005).

    Article  CAS  Google Scholar 

  36. Boer, R. et al. Unveiling the molecular mechanism of a conjugative relaxase: the structure of TrwC complexed with a 27-mer DNA comprising the recognition hairpin and the cleavage site. J. Mol. Biol. 358, 857–869 (2006).

    Article  CAS  Google Scholar 

  37. Nowotny, M., Gaidamakov, S.A., Crouch, R.J. & Yang, W. Crystal structures of RNase H bound to an RNA/DNA hybrid: substrate specificity and metal-dependent catalysis. Cell 121, 1005–1016 (2005).

    Article  CAS  Google Scholar 

  38. Larkin, C., Haft, R.J., Harley, M.J., Traxler, B. & Schildbach, J.F. Roles of active site residues and the HUH motif of the F plasmid TraI relaxase. J. Biol. Chem. 282, 33707–33713 (2007).

    Article  CAS  Google Scholar 

  39. Maguire, M.E. & Cowan, J.A. Magnesium chemistry and biochemistry. Biometals 15, 203–210 (2002).

    Article  CAS  Google Scholar 

  40. Mate, M.J. & Kleanthous, C. Structure-based analysis of the metal-dependent mechanism of H-N-H endonucleases. J. Biol. Chem. 279, 34763–34769 (2004).

    Article  CAS  Google Scholar 

  41. Hsia, K.C. et al. DNA binding and degradation by the HNH protein ColE7. Structure 12, 205–214 (2004).

    Article  Google Scholar 

  42. Doudeva, L.G. et al. Crystal structural analysis and metal-dependent stability and activity studies of the ColE7 endonuclease domain in complex with DNA/Zn2+ or inhibitor/Ni2+. Protein Sci. 15, 269–280 (2006).

    Article  CAS  Google Scholar 

  43. Galburt, E.A. et al. A novel endonuclease mechanism directly visualized for I-PpoI. Nat. Struct. Biol. 6, 1096–1099 (1999).

    Article  CAS  Google Scholar 

  44. Li, C.L. et al. DNA binding and cleavage by the periplasmic nuclease Vvn: a novel structure with a known active site. EMBO J. 22, 4014–4025 (2003).

    Article  CAS  Google Scholar 

  45. Shen, B.W., Landthaler, M., Shub, D.A. & Stoddard, B.L. DNA binding and cleavage by the HNH homing endonuclease I-HmuI. J. Mol. Biol. 342, 43–56 (2004).

    Article  CAS  Google Scholar 

  46. Raaijmakers, H. et al. X-ray structure of T4 endonuclease VII: a DNA junction resolvase with a novel fold and unusual domain-swapped dimer architecture. EMBO J. 18, 1447–1458 (1999).

    Article  CAS  Google Scholar 

  47. Harding, M.M. The geometry of metal-ligand interactions relevant to proteins. Acta Crystallogr. D Biol. Crystallogr. 55, 1432–1443 (1999).

    Article  CAS  Google Scholar 

  48. Harding, M.M. The architecture of metal coordination groups in proteins. Acta Crystallogr. D Biol. Crystallogr. 60, 849–859 (2004).

    Article  Google Scholar 

  49. Derbyshire, V., Grindley, N.D. & Joyce, C.M. The 3′-5′ exonuclease of DNA polymerase I of Escherichia coli: contribution of each amino acid at the active site to the reaction. EMBO J. 10, 17–24 (1991).

    Article  CAS  Google Scholar 

  50. Jones, T.A., Zou, J.-Y. & Cowan, S.W. Improved methods for building models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

I thank C. Biertümpfel, C. Larkin and M. Nowotny for stimulating discussion, and B. Craigie, F. Dyda, D. Leahy and H. Yuan for critical reading of the manuscript. This research was supported by the Intramural Research Program of the US National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, W. An equivalent metal ion in one- and two-metal-ion catalysis. Nat Struct Mol Biol 15, 1228–1231 (2008). https://doi.org/10.1038/nsmb.1502

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1502

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing