Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of the nickel-responsive transcription factor NikR

Abstract

NikR is a metal-responsive transcription factor that controls nickel uptake in Escherichia coli by regulating expression of a nickel-specific ATP-binding cassette (ABC) transporter. We have determined the first two structures of NikR: the full-length apo repressor at a resolution of 2.3 Å and the nickel-bound C-terminal regulatory domain at a resolution of 1.4 Å. NikR is the only known metal-responsive member of the ribbon-helix-helix family of transcription factors, and its structure has a quaternary arrangement consisting of two dimeric DNA-binding domains separated by a tetrameric regulatory domain that binds nickel. The position of the C-terminal regulatory domain enforces a large spacing between the contacts that each NikR DNA-binding domain can make with the nik operator. The regulatory domain of NikR contains four nickel-binding sites at the tetramer interface, each exhibiting a novel square-planar coordination by three histidines and one cysteine side chain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NikR structures and structural comparisons.
Figure 2: Strictly conserved amino acids at the high-affinity nickel-binding site of NikR.
Figure 3: Side chain movements and interactions at the high-affinity nickel site.
Figure 4: NikR versus other ribbon-helix-helix transcription factors.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Maroney, M.J. Structure/function relationships in nickel metallobiochemistry. Curr. Opin. Chem. Biol. 3, 188–199 (1999).

    Article  CAS  Google Scholar 

  2. Chivers, P.T. & Sauer, R.T. Regulation of high affinity nickel uptake in bacteria. Ni2+-dependent interaction of NikR with wild-type and mutant operator sites. J. Biol. Chem. 275, 19735–19741 (2000).

    Article  CAS  Google Scholar 

  3. Navarro, C., Wu, L.F. & Mandrand-Berthelot, M.A. The nik operon of Escherichia coli encodes a periplasmic binding-protein-dependent transport system for nickel. Mol. Microbiol. 9, 1181–1191 (1993).

    Article  CAS  Google Scholar 

  4. Chivers, P.T. & Sauer, R.T. NikR repressor: high-affinity nickel binding to the C-terminal domain regulates binding to operator DNA. Chem. Biol. 9, 1141–1148 (2002).

    Article  CAS  Google Scholar 

  5. Carrington, P.E., Chivers, P.T., Al-Mjeni, F., Sauer, R.T. & Maroney, M.J. Nickel coordination is regulated by the DNA-bound state of NikR. Nat. Struct. Biol. 10, 126–130 (2003).

    Article  CAS  Google Scholar 

  6. Chivers, P.T. & Sauer, R.T. NikR is a ribbon-helix-helix DNA-binding protein. Protein Sci. 8, 2494–2500 (1999).

    Article  CAS  Google Scholar 

  7. Breg, J.N., van Opheusden, J.H., Burgering, M.J., Boelens, R. & Kaptein, R. Structure of Arc repressor in solution: evidence for a family of β-sheet DNA-binding proteins. Nature 346, 586–589 (1990).

    Article  CAS  Google Scholar 

  8. Burgering, M.J. et al. Solution structure of dimeric Mnt repressor (1–76). Biochemistry 33, 15036–15045 (1994).

    Article  CAS  Google Scholar 

  9. Gomis-Ruth, F.X. et al. The structure of plasmid-encoded transcriptional repressor CopG unliganded and bound to its operator. EMBO J. 17, 7404–7415 (1998).

    Article  CAS  Google Scholar 

  10. Rafferty, J.B., Somers, W.S., Saint-Girons, I. & Phillips, S.E. Three-dimensional crystal structures of Escherichia coli met repressor with and without corepressor. Nature 341, 705–710 (1989).

    Article  CAS  Google Scholar 

  11. Murayama, K., Orth, P., de la Hoz, A.B., Alonso, J.C. & Saenger, W. Crystal structure of omega transcriptional repressor encoded by Streptococcus pyogenes plasmid pSM19035 at 1.5 Å resolution. J. Mol. Biol. 314, 789–796 (2001).

    Article  CAS  Google Scholar 

  12. Doukov, T.I., Iverson, T.M., Seravalli, J., Ragsdale, S.W. & Drennan, C.L. A Ni-Fe-Cu center in a bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase. Science 298, 567–572 (2002).

    Article  CAS  Google Scholar 

  13. Chipman, D.M. & Shaanan, B. The ACT domain family. Curr. Opin. Struct. Biol. 11, 694–700 (2001).

    Article  CAS  Google Scholar 

  14. Schuller, D.J., Grant, G.A. & Banaszak, L.J. The allosteric ligand site in the Vmax-type cooperative enzyme phosphoglycerate dehydrogenase. Nat. Struct. Biol. 2, 69–76 (1995).

    Article  CAS  Google Scholar 

  15. Cho, Y., Sharma, V. & Sacchettini, J.C. Crystal structure of ATP phosphoribosyltransferase from Mycobacterium tuberculosis. J. Biol. Chem. 278, 8333–8339 (2003).

    Article  CAS  Google Scholar 

  16. Kobe, B. et al. Structural basis of autoregulation of phenylalanine hydroxylase. Nat. Struct. Biol. 6, 442–448 (1999).

    Article  CAS  Google Scholar 

  17. Leonard, P.M. et al. Crystal structure of the Lrp-like transcriptional regulator from the archaeon Pyrococcus furiosus. EMBO J. 20, 990–997 (2001).

    Article  CAS  Google Scholar 

  18. Ettema, T.J., Brinkman, A.B., Tani, T.H., Rafferty, J.B. & Van Der Oost, J. A novel ligand-binding domain involved in regulation of amino acid metabolism in prokaryotes. J. Biol. Chem. 277, 37464–37468 (2002).

    Article  CAS  Google Scholar 

  19. Schneider, T.R. A genetic algorithm for the identification of conformationally invariant regions in protein molecules. Acta Crystallogr. D 58, 195–208 (2002).

    Article  Google Scholar 

  20. Sheldrick, G.M. & Schneider, T.R. SHELXL: high-resolution refinement. Methods Enzymol. 277, 319–343 (1997).

    Article  CAS  Google Scholar 

  21. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  22. LeMaster, D.M. & Richards, F.M. 1H-15N heteronuclear NMR studies of Escherichia coli thioredoxin in samples isotopically labeled by residue type. Biochemistry 24, 7263–7268 (1985).

    Article  CAS  Google Scholar 

  23. Hunt, J.B., Neece, S.H. & Ginsburg, A. The use of 4-(2-pyridylazo)resorcinol in studies of zinc release from Escherichia coli aspartate transcarbamoylase. Anal. Biochem. 146, 150–157 (1985).

    Article  CAS  Google Scholar 

  24. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  25. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  26. Cowtan, K.D. & Main, P. Phase combination and cross validation in iterated density-modification calculations. Acta Crystallogr. D 52, 43–48 (1996).

    Article  CAS  Google Scholar 

  27. McRee, D.E. XtalView/Xfit—a versatile program for manipulating atomic coordinates and electron density. J. Struct. Biol. 125, 156–165 (1999).

    Article  CAS  Google Scholar 

  28. Lamzin, V.S. & Wilson, K.S. Automated refinement of protein models. Acta Crystallogr. D 49, 129–147 (1993).

    Article  CAS  Google Scholar 

  29. Terwilliger, T.C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D 55, 1174–1178 (1999).

    Article  CAS  Google Scholar 

  30. Carson, M. Ribbons. Methods Enzymol. 277, 493–505 (1997).

    Article  CAS  Google Scholar 

  31. Raumann, B.E., Rould, M.A., Pabo, C.O. & Sauer, R.T. DNA recognition by β-sheets in the Arc repressor-operator crystal structure. Nature 367, 754–757 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported in part by the US National Institutes of Health (NIH) (R.T.S., C.L.D.), Searle Scholars Program (C.L.D.), Cecil and Ida Green Career Development Fund (C.L.D.), Lester Wolfe Predoctoral Fellowship (E.R.S.), and the Gray Fund for Undergraduate Research (Y.G.). Data were collected at the National Synchrotron Light Source (NSLS), Advanced Light Source (ALS), Advanced Photon Source (APS), and Stanford Synchrotron Radiation Laboratory (SSRL) synchrotrons. Synchrotron facilities are funded by the US Department of Energy (ALS 5.0.2, NSLS X25, SSRL), NIH National Center of Research Resources (APS NE-CAT 8BM, NSLS X25), and the US National Institute of General Medical Sciences (NSLS X25).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine L Drennan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schreiter, E., Sintchak, M., Guo, Y. et al. Crystal structure of the nickel-responsive transcription factor NikR. Nat Struct Mol Biol 10, 794–799 (2003). https://doi.org/10.1038/nsb985

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb985

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing