Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chemical trapping and crystal structure of a catalytic tRNA guanine transglycosylase covalent intermediate

A Corrigendum to this article was published on 01 July 2004

Abstract

Prokaryotic tRNA guanine transglycosylase (TGT) catalyzes replacement of guanine (G) by 7-aminomethyl-7-deazaguanine (PreQ1) at the wobble position of four specific tRNAs. Addition of 9-deazaguanine (9dzG) to a reaction mixture of Zymomonas mobilis TGT and an RNA substrate allowed us to trap, purify and crystallize a chemically competent covalent intermediate of the TGT-catalyzed reaction. The crystal structure of the TGT–RNA–9dzG ternary complex at a resolution of 2.9 Å reveals, unexpectedly, that RNA is tethered to TGT through the side chain of Asp280. Thus, Asp280, instead of the previously proposed Asp102, acts as the nucleophile for the reaction. The RNA substrate adopts an unusual conformation, with four out of seven nucleotides in the loop region flipped out. Interactions between TGT and RNA revealed by the structure provide the molecular basis of the RNA substrate requirements by TGT. Furthermore, reaction of PreQ1 with the crystallized covalent intermediate provides insight into the necessary structural changes required for the TGT-catalyzed reaction to occur.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Trapping of a TGT–RNA covalent intermediate.
Figure 2: Alignment of TGT sequences from different organisms.
Figure 3: Overall structure of the trapped covalent intermediate.
Figure 4: Conformational changes in RNA and TGT.
Figure 5: The active site and molecular basis of substrate specificity.
Figure 6: Enzymatic activities of TGT mutants.
Figure 7: The chemical reaction carried out in crystal and the resulting structural changes.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Limbach, P.A., Crain, P.F. & McCloskey, J.A. Summary: the modified nucleosides of RNA. Nucleic Acids Res. 22, 2183–2196 (1994).

    Article  CAS  Google Scholar 

  2. Urbonavicius, J., Qian, Q., Durand, J.M., Hagervall, T.G. & Bjork, G.R. Improvement of reading frame maintenance is a common function for several tRNA modifications. EMBO J. 20, 4863–4873 (2001).

    Article  CAS  Google Scholar 

  3. Yarian, C. et al. Accurate translation of the genetic code depends on tRNA modified nucleosides. J. Biol. Chem. 277, 16391–16395 (2002).

    Article  CAS  Google Scholar 

  4. Yasukawa, T., Suzuki, T., Ishii, N., Ohta, S. & Watanabe, K. Wobble modification defect in tRNA disturbs codon-anticodon interaction in a mitochondrial disease. EMBO J. 20, 4794–4802 (2001).

    Article  CAS  Google Scholar 

  5. Yasukawa, T. et al. Defect in modification at the anticodon wobble nucleotide of mitochondrial tRNALys with the MERRF encephalomyopathy pathogenic mutation. FEBS Lett. 467, 175–178 (2000).

    Article  CAS  Google Scholar 

  6. Okada, N. & Nishimura, S. Isolation and characterization of a guanine insertion enzyme, a specific tRNA transglycosylase, from Escherichia coli. J. Biol. Chem. 254, 3061–3066 (1979).

    CAS  PubMed  Google Scholar 

  7. Okada, N. et al. Novel mechanism of post-transcriptional modification of tRNA. Insertion of bases of Q precursors into tRNA by a specific tRNA transglycosylase reaction. J. Biol. Chem. 254, 3067–3073 (1979).

    CAS  PubMed  Google Scholar 

  8. Slany, R.K., Bosl, M., Crain, P.F. & Kersten, H. A new function of S-adenosylmethionine: the ribosyl moiety of AdoMet is the precursor of the cyclopentenediol moiety of the tRNA wobble base queuine. Biochemistry 32, 7811–7817 (1993).

    Article  CAS  Google Scholar 

  9. Frey, B., McCloskey, J., Kersten, W. & Kersten, H. New function of vitamin B12: cobamide-dependent reduction of epoxyqueuosine to queuosine in tRNAs of Escherichia coli and Salmonella typhimurium. J. Bacteriol. 170, 2078–2082 (1988).

    Article  CAS  Google Scholar 

  10. Katze, J.R., Gunduz, U., Smith, D.L., Cheng, C.S. & McCloskey, J.A. Evidence that the nucleic acid base queuine is incorporated intact into tRNA by animal cells. Biochemistry 23, 1171–1176 (1984).

    Article  CAS  Google Scholar 

  11. Curnow, A.W., Kung, F.L., Koch, K.A. & Garcia, G.A. tRNA-guanine transglycosylase from Escherichia coli: gross tRNA structural requirements for recognition. Biochemistry 32, 5239–5246 (1993).

    Article  CAS  Google Scholar 

  12. Nakanishi, S. et al. A UGU sequence in the anticodon loop is a minimum requirement for recognition by Escherichia coli tRNA-guanine transglycosylase. J. Biol. Chem. 269, 32221–32225 (1994).

    CAS  PubMed  Google Scholar 

  13. Curnow, A.W. & Garcia, G.A. tRNA-guanine transglycosylase from Escherichia coli. Minimal tRNA structure and sequence requirements for recognition. J. Biol. Chem. 270, 17264–17267 (1995).

    Article  CAS  Google Scholar 

  14. Romier, C., Reuter, K., Suck, D. & Ficner, R. Crystal structure of tRNA-guanine transglycosylase: RNA modification by base exchange. EMBO J. 15, 2850–2857 (1996).

    Article  CAS  Google Scholar 

  15. Romier, C., Reuter, K., Suck, D. & Ficner, R. Mutagenesis and crystallographic studies of Zymomonas mobilis tRNA-guanine transglycosylase reveal aspartate 102 as the active site nucleophile. Biochemistry 35, 15734–15739 (1996).

    Article  CAS  Google Scholar 

  16. Kung, F.L., Nonekowski, S. & Garcia, G.A. tRNA-guanine transglycosylase from Escherichia coli: recognition of noncognate-cognate chimeric tRNA and discovery of a novel recognition site within the TpsiC arm of tRNAPhe. RNA 6, 233–244 (2000).

    Article  CAS  Google Scholar 

  17. Banner, D.W., Bloomer, A., Petsko, G.A., Phillips, D.C. & Wilson, I.A. Atomic coordinates for triose phosphate isomerase from chicken muscle. Biochem. Biophys. Res. Commun. 72, 146–155 (1976).

    Article  CAS  Google Scholar 

  18. Shi, H. & Moore, P.B. The crystal structure of yeast phenylalanine tRNA at 1.93 Å resolution: a classic structure revisited. RNA 6, 1091–1105 (2000).

    Article  CAS  Google Scholar 

  19. Westhof, E., Dumas, P. & Moras, D. Restrained refinement of two crystalline forms of yeast aspartic acid and phenylalanine transfer RNA crystals. Acta Crystallogr. A 44, 112–123 (1988).

    Article  Google Scholar 

  20. Benas, P. et al. The crystal structure of HIV reverse-transcription primer tRNA(Lys,3) shows a canonical anticodon loop. RNA 6, 1347–1355 (2000).

    Article  CAS  Google Scholar 

  21. Basavappa, R. & Sigler, P.B. The 3 Å crystal structure of yeast initiator tRNA: functional implications in initiator/elongator discrimination. EMBO J. 10, 3105–3111 (1991).

    Article  CAS  Google Scholar 

  22. Ruff, M. et al. Class II aminoacyl transfer RNA synthetases: crystal structure of yeast aspartyl-tRNA synthetase complexed with tRNAAsp. Science 252, 1682–1689 (1991).

    Article  CAS  Google Scholar 

  23. Goldgur, Y. et al. The crystal structure of phenylalanyl-tRNA synthetase from Thermus thermophilus complexed with cognate tRNAPhe. Structure 5, 59–68 (1997).

    Article  CAS  Google Scholar 

  24. Rould, M.A., Perona, J.J. & Steitz, T.A. Structural basis of anticodon loop recognition by glutaminyl-tRNA synthetase. Nature 352, 213–218 (1991).

    Article  CAS  Google Scholar 

  25. Ishitani, R. et al. Crystal structure of archaeosine tRNA-guanine transglycosylase. J. Mol. Biol. 318, 665–677 (2002).

    Article  CAS  Google Scholar 

  26. Marck, C. & Grosjean, H. tRNomics: analysis of tRNA genes from 50 genomes of Eukarya, Archaea, and Bacteria reveals anticodon-sparing strategies and domain-specific features. RNA 8, 1189–1232 (2002).

    Article  CAS  Google Scholar 

  27. Auffinger, P. & Westhof, E. An extended structural signature for the tRNA anticodon loop. RNA 7, 334–341 (2001).

    Article  CAS  Google Scholar 

  28. Hoops, G.C., Park, J., Garcia, G.A. & Townsend, L.B. Determination of acidic ionization constants of certain 5-substituted 2-aminopyrrolo[2,3-d]pyrimidin-4-ones. J. Heterocyclic Chem. 33, 767–781 (1996).

    Article  CAS  Google Scholar 

  29. Slupphaug, G. et al. A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA. Nature 384, 87–92 (1996).

    Article  CAS  Google Scholar 

  30. Lau, A.Y., Scharer, O.D., Samson, L., Verdine, G.L. & Ellenberger, T. Crystal structure of a human alkylbase-DNA repair enzyme complexed to DNA: mechanisms for nucleotide flipping and base excision. Cell 95, 249–258 (1998).

    Article  CAS  Google Scholar 

  31. Bruner, S.D., Norman, D.P. & Verdine, G.L. Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature 403, 859–866 (2000).

    Article  CAS  Google Scholar 

  32. Romier, C., Ficner, R., Reuter, K. & Suck, D. Purification, crystallization, and preliminary X-ray diffraction studies of tRNA-guanine transglycosylase from Zymomonas mobilis. Proteins 24, 516–519 (1996).

    Article  CAS  Google Scholar 

  33. Tayler, E.C. & Young, W.B. Pyrrolo[3,2-d]pyrimidine folate analogues: “inverted” analogues of the cytotoxic agent LY231514. J. Org. Chem. 60, 7947–7952 (1995).

    Article  Google Scholar 

  34. Akimoto, H., Imamiya, E., Hitaka, T. & Nomura, H. Synthesis of queuine, the base of naturally occurring hypermodified nucleoside (queuosine) and its analogues. J. Chem. Perkin Trans. I, 1637–1644 (1988).

  35. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 277, 307–326 (1997).

    Article  Google Scholar 

  36. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  37. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  38. Brünger, A.T. et al. Crystallography & NMR System: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  39. Carson, M. Ribbon models of macromolecules. J. Mol. Graph. 5, 103–106 (1987).

    Article  CAS  Google Scholar 

  40. Read, R.J. Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr. A 42, 140–149 (1986).

    Article  Google Scholar 

  41. Ishitani, R. et al. Alternative tertiary structure of tRNA for recognition by a posttranscriptional modification enzyme. Cell 113, 383–394 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to T. Conway (University of Oklahoma) for a plasmid encoding the Z. mobilis TGT and to P. Tyler (Industrial Research Ltd., New Zealand) for providing the initial 9dzG. We thank the staffs of beamlines 14-BMC (K. Brister, T. Teng and R. Pahl) and 19-ID (S. Ginell, A. Joachimiak and Y. Kim) at APS for their support during data collections; Y. Elias, K. Phannach and other members of the Huang research group; and D. Kranz, R. Switzer and J. Gerlt for many helpful discussions and critical reading of the manuscript. The work was supported by start-up funds from the University of Illinois and a grant from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raven H Huang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, W., Liu, X. & Huang, R. Chemical trapping and crystal structure of a catalytic tRNA guanine transglycosylase covalent intermediate. Nat Struct Mol Biol 10, 781–788 (2003). https://doi.org/10.1038/nsb976

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb976

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing