Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the manganese-bound manganese transport regulator of Bacillus subtilis

Abstract

The Bacillus subtilis manganese transport regulator, MntR, binds Mn2+ as an effector and is a repressor of transporters that import manganese. A member of the diphtheria toxin repressor (DtxR) family of metalloregulatory proteins, MntR exhibits selectivity for Mn2+ over Fe2+. Replacement of a metal-binding residue, Asp8, with methionine (D8M) relaxes this specificity. We report here the X-ray crystal structures of wild-type MntR and the D8M mutant bound to manganese with 1.75 Å and 1.61 Å resolution, respectively. The 142-residue MntR homodimer has substantial structural similarity to the 226-residue DtxR but lacks the C-terminal SH3-like domain of DtxR. The metal-binding pockets of MntR and DtxR are substantially different. The cation-to-cation distance between the two manganese ions bound by MntR is 3.3 Å, whereas that between the metal ions bound by DtxR is 9 Å. D8M binds only a single Mn2+ per monomer, owing to alteration of the metal-binding site. The sole retained metal site adopts pseudo-hexacoordinate geometry rather than the pseudo-heptacoordinate geometry of the MntR metal sites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of manganese-bound wild-type MntR and the D8M mutant.
Figure 2: Stereo view of a σA-weighted Fo − Fc omit electron density map of the metal-binding region of MntR.
Figure 3: Comparison of wild-type MntR and D8M metal-binding sites.
Figure 4: Overlay of metal-binding regions of MntR (colored by atom type as in Fig. 3b) and cobalt-bound IdeR (PDB entry 1FX7; green).

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Jakubovics, N.S. & Jenkinson, H.F. Out of the iron age: new insights into the critical role of manganese homeostasis in bacteria. Microbiology 147, 1709–1718 (2001).

    Article  CAS  Google Scholar 

  2. Horsburgh, M.J., Wharton, S.J., Karavolos, M. & Foster, S.J. Manganese: elemental defence for a life with oxygen. Trends Microbiol. 10, 494–501 (2002).

    Article  Google Scholar 

  3. Pohl, E. et al. Architecture of a protein central to iron homeostasis: crystal structure and spectroscopic analysis of the ferric uptake regulator. Mol. Microbiol. 47, 903–915 (2003).

    Article  CAS  Google Scholar 

  4. Boyd, J., Ooze, M.N. & Murphy, J.R. Molecular cloning and DNA sequence analysis of a diphtheria tox iron-dependent regulatory element (dtxR) from Corynebacterium diphtheriae. Proc. Natl. Acad. Sci. USA 87, 5968–5972 (1990).

    Article  CAS  Google Scholar 

  5. Gold, B., Rodriguez, G.M., Marras, S.A.E., Pentecost, M. & Smith, I. The Mycobacterium tuberculosis IdeR is a dual functional regulator that controls transcription of genes involved in iron acquisition, iron storage and survival in macrophages. Mol. Microbiol. 42, 851–865 (2001).

    Article  CAS  Google Scholar 

  6. Feese, M.D., Pohl, E., Holmes, R.K. & Hol, W.G.J. Iron-dependent regulators. In Handbook of Metalloproteins (eds. Messerschmidt, A., Huber, R., Poulos, T. & Wieghardt, K.) 850–863 (Wiley, Chichester, UK, 2001).

    Google Scholar 

  7. Ringe, D., White, A., Chen, S. & Murphy, J.R. Diphtheria toxin repressor: metal ion mediated control of transcription. In Handbook of Metalloproteins (eds. Messerschmidt, A., Huber, R., Poulos, T. & Wieghardt, K.) 929–938 (Wiley, Chichester, 2001).

    Google Scholar 

  8. Spiering, M.M., Ringe, D., Murphy, J.R. & Marletta, M.A. Metal stoichiometry and functional studies of the diphtheria toxin repressor. Proc. Natl. Acad. Sci. USA 100, 3808–3813 (2003).

    Article  CAS  Google Scholar 

  9. Qiu, X. et al. Three-dimensional structure of the diphtheria toxin repressor in complex with divalent cation co-repressors. Structure 3, 87–100 (1995).

    Article  CAS  Google Scholar 

  10. Feese, M.D., Ingason, B.P., Goranson-Siekierke, J., Holmes, R.K. & Hol, W.G.J. Crystal structure of the iron-dependent regulator from Mycobacterium tuberculosis at 2.0 Å resolution reveals the Src homology domain 3-like fold and metal binding function of the third domain. J. Biol. Chem. 276, 5959–5966 (2001).

    Article  CAS  Google Scholar 

  11. White, A., Ding, X., van der Spek, J.C., Murphy, J.R. & Ringe, D. Structure of the metal-ion-activated diphtheria toxin repressor/tox operator complex. Nature 394, 502–506 (1998).

    Article  CAS  Google Scholar 

  12. Pohl, E., Holmes, R.K. & Hol, W.G.J. Motion of the DNA-binding domain with respect to the core of the diphtheria toxin repressor (DtxR) revealed in the crystal structures of apo- and holo-DtxR. J. Biol. Chem. 273, 22420–22427 (1998).

    Article  CAS  Google Scholar 

  13. Twigg, P.D., Parthasarathy, G., Guerrero, L., Logan, T.M. & Caspar, D.L.D. Disordered to ordered folding in the regulation of diphtheria toxin repressor activity. Proc. Natl. Acad. Sci. USA 98, 11259–11264 (2001).

    Article  CAS  Google Scholar 

  14. Schmitt, M.P. Analysis of a DtxR-like metalloregulatory protein, MntR, from Corynebacterium diphtheriae that controls expression of an ABC metal transporter by an Mn2+-dependent mechanism. J. Bacteriol. 184, 6882–6892 (2002).

    Article  CAS  Google Scholar 

  15. Posey, J.E. & Gherardini, F.C. Lack of a role for iron in the Lyme disease pathogen. Science 288, 1651–1653 (2000).

    Article  CAS  Google Scholar 

  16. Que, Q. & Helmann, J.D. Manganese homeostasis in Bacillus subtilis is regulated by MntR, a bifunctional regulator related to the diphtheria toxin repressor family of proteins. Mol. Microbiol. 35, 1454–1468 (2000).

    Article  CAS  Google Scholar 

  17. Guedon, E. et. al. The global transcriptional response of Bacillus subtilis to manganese involves the MntR, Fur, TnrA, and σB Regulons. Mol. Microbiol. in the press (2003).

  18. Schmitt, M.P. & Holmes, R.K. Analysis of diphtheria toxin repressor-operator interactions and characterization of a mutant repressor with decreased binding activity for divalent metals. Mol. Microbiol. 9, 173–181 (1993).

    Article  CAS  Google Scholar 

  19. Guedon, E. & Helmann, J.D. Origins of metal ion selectivity in the DtxR/MntR family of metalloregulators. Mol. Microbiol. 48, 495–506 (2003).

    Article  CAS  Google Scholar 

  20. Brennan, R.G. The winged-helix DNA-binding motif: another helix-turn-helix takeoff. Cell 74, 773–776 (1993).

    Article  CAS  Google Scholar 

  21. Wintjens, R. & Rooman, M. Structural classification of HTH DNA-binding domains and protein–DNA interaction modes. J. Mol. Biol. 262, 294–313 (1996).

    Article  CAS  Google Scholar 

  22. Kanyo, Z.F., Scolnick, L.R., Ash, D.E. & Christianson, D.W. Structure of a unique binuclear manganese cluster in arginase. Nature 383, 554–557 (1996).

    Article  CAS  Google Scholar 

  23. Bewley, M.C., Jeffrey, P.D., Patchett, M.L., Kanyo, Z.F. & Baker, E.N. Crystal structures of Bacillus caldovelox arginase in complex with substrate and inhibitors reveal new insights into activation, inhibition and catalysis in the arginase superfamily. Structure 7, 435–448 (1999).

    Article  CAS  Google Scholar 

  24. Wilce, M.C.J. et al. Structure and mechanism of a proline-specific aminopeptidase from Escherichia coli. Proc. Natl. Acad. Sci. USA 95, 3472–3477 (1998).

    Article  CAS  Google Scholar 

  25. Barynin, V.V. et al. Crystal structure of manganese catalase from Lactobacillus plantarum. Structure 9, 725–738 (2001).

    Article  CAS  Google Scholar 

  26. Glusker, J.P., Katz, A.K. & Bock, C.W. Two-metal binding motifs in protein crystal structures. Struct. Chem. 12, 323–341 (2001).

    Article  CAS  Google Scholar 

  27. Whittington, D.A. & Lippard, S.J. Crystal structures of the soluble methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath) demonstrating geometrical variability at the dinuclear iron active site. J. Am. Chem. Soc. 123, 827–838 (2001).

    Article  CAS  Google Scholar 

  28. Atta, M., Fontecave, M., Wilkins, P.C. & Dalton, H. Abduction of iron(III) from the soluble methane monooxygenase hydroxylase and reconstitution of the binuclear site with iron and manganese. Eur. J. Biochem. 217, 217–223 (1993).

    Article  CAS  Google Scholar 

  29. Harding, M.M. The geometry of metal-ligand interactions relevant to proteins. II. Angles at the metal atom, additional weak metal-donor interactions. Acta Crystallogr. D 56, 857–867 (2000).

    Article  CAS  Google Scholar 

  30. Kim, N.N. et al. Probing erectile function: S-(2-boronoethyl)-L-cysteine binds to arginase as a transition state analogue and enhances smooth muscle relaxation in human penile corpus cavernosum. Biochem. 40, 2678–2688 (2001).

    Article  CAS  Google Scholar 

  31. Seemann, J.E. & Schultz, G.E. Structure and mechanism of L-fucose isomerase from Escherichia coli. J. Mol. Biol. 273, 256–268 (1997).

    Article  CAS  Google Scholar 

  32. Leslie, A.G.W. Recent changes to the MOSFLM package for processing film and image plate data. Joint CCP4 + ESF-EAMCB Newsletter on Protein Crystallography Vol. 26 (Daresbury Laboratory, Warrington, UK, 1992).

    Google Scholar 

  33. Brunger, A.T. et al. Crystallography & NMR System: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  34. Yeates, T.O. Detecting and overcoming crystal twinning. Methods Enzymol. 276, 344–358 (1997).

    Article  CAS  Google Scholar 

  35. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M.A. Schumacher for help with data collection and K.J. Newberry for assistance with refinement and model building. This work was supported in part by the Oregon Medical Research Foundation (A.G.) and grants from the US National Institutes of Health (NIH) (R.G.B. and J.D.H.). Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory (SSRL), operated by Stanford University on behalf of the US Department of Energy (DOE), Office of Basic Energy Sciences. The SSRL Structural Molecular Biology Program is supported by the DOE, Office of Biological and Environmental Research, and by the US NIH, National Center for Research Resources, Biomedical Technology Program, and the National Institute of General Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arthur Glasfeld or Richard G Brennan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glasfeld, A., Guedon, E., Helmann, J. et al. Structure of the manganese-bound manganese transport regulator of Bacillus subtilis. Nat Struct Mol Biol 10, 652–657 (2003). https://doi.org/10.1038/nsb951

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb951

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing