Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of neuronal SNARE assembly by the membrane

Abstract

In the neuron, SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) assembly acts centrally in driving membrane fusion, a required process for neurotransmitter release. In the cytoplasm, vesicular SNARE VAMP-2 (vesicle-associated membrane protein-2) engages with two plasma membrane SNAREs, syntaxin 1A and SNAP-25 (synaptosome-associated protein of 25 kDa), to form the core complex that bridges two membranes. Although various factors regulate SNARE assembly, the membrane also aids in regulation by trapping VAMP-2 in the membrane. Fluorescence and EPR analyses revealed that the insertion of seven C-terminal core-forming residues into the membrane controls complex formation of the entire core region, even though the preceding 54 core-forming residues are fully exposed and freely moving. When two interfacial tryptophan residues in this region were replaced with hydrophilic serine residues, the mutation supported rapid complex formation. The results suggest that the membrane-proximal region of VAMP-2 is a regulatory module for SNARE assembly, providing new insights into calcium-triggered membrane fusion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of SNARE samples.
Figure 2: Two native tryptophan residues of VAMP-2 are inserted into the membrane.
Figure 3: EPR line shape analysis.
Figure 4: EPR accessibility measurements.
Figure 5: EPR assay of local conformational changes.
Figure 6: EPR assay of SNARE complex formation.

Similar content being viewed by others

References

  1. Söllner, T., Bennett, M.K., Whiteheart, S.W., Scheller, R.H. & Rothman, J.E. A protein assembly–disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75, 409–418 (1993).

    Article  Google Scholar 

  2. Rothman, J.E. Mechanisms of intracellular protein transport. Nature 372, 55–63 (1994).

    Article  CAS  Google Scholar 

  3. Jahn, R. & Südhof, T.C. Membrane fusion and exocytosis. Annu. Rev. Biochem. 68, 863–911 (1999).

    Article  CAS  Google Scholar 

  4. Lin, R.C. & Scheller, R.H. Mechanisms of synaptic vesicle exocytosis. Annu. Rev. Cell Dev. Biol. 16, 19–49 (2000).

    Article  CAS  Google Scholar 

  5. Brunger, A.T. Structural insights into the molecular mechanism of calcium-dependent vesicle-membrane fusion. Curr. Opin. Struct. Biol. 11, 163–173 (2001).

    Article  CAS  Google Scholar 

  6. Rizo, J. & Sudhof, T.C. Snares and Munc18 in synaptic vesicle fusion. Nat. Rev. Neurosci. 3, 641–653 (2002).

    Article  CAS  Google Scholar 

  7. Poirier, M.A. et al. The synaptic SNARE complex is a parallel four-stranded helical bundle. Nat. Struct. Biol. 5, 765–769 (1998).

    Article  CAS  Google Scholar 

  8. Sutton, R.B., Fasshauer, D., Jahn, R. & Brunger, A.T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature 395, 347–353 (1998).

    Article  CAS  Google Scholar 

  9. Hanson, P.I., Roth, R., Morisaki, H., Jahn, R. & Heuser, J.E. Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell 90, 523–535 (1997).

    Article  CAS  Google Scholar 

  10. Lin, R.C. & Scheller, R.H. Structural organization of the synaptic exocytosis core complex. Neuron 19, 1087–1094 (1997).

    Article  CAS  Google Scholar 

  11. Fasshauer, D., Otto, H., Eliason, W.K., Jahn, R. & Brunger, A.T. Structural changes are associated with soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor complex formation. J. Biol. Chem. 272, 28036–28041 (1997).

    Article  CAS  Google Scholar 

  12. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 (1998).

    Article  CAS  Google Scholar 

  13. Fernandez, I. et al. Three-dimensional structure of an evolutionarily conserved N-terminal domain of syntaxin 1A. Cell 94, 841–849 (1998).

    Article  CAS  Google Scholar 

  14. Nicholson, K.L. et al. Regulation of SNARE complex assembly by an N-terminal domain of the t-SNARE Sso1p. Nat. Struct. Biol. 5, 793–802 (1998).

    Article  CAS  Google Scholar 

  15. Chen, Y.A., Scales, S.J., Patel, S.M., Doung, Y.C. & Scheller, R.H. SNARE complex formation is triggered by Ca2+ and drives membrane fusion. Cell 97, 165–174 (1999).

    Article  CAS  Google Scholar 

  16. Südhof, T.C. Synaptotagmins: why so many? J. Biol. Chem. 277, 7629–7632 (2002).

    Article  Google Scholar 

  17. Fernandez-Chacon, R. et al. Synaptotagmin I functions as a calcium regulator of release probability. Nature 410, 41–49 (2001).

    Article  CAS  Google Scholar 

  18. Chapman, E.R. Synaptotagmin: a Ca2+ sensor that triggers exocytosis? Nat. Mol. Cell. Biol. 3, 1–11 (2002).

    Article  Google Scholar 

  19. Li, C. et al. Ca2+-dependent and -independent activities of neural and non-neural synaptotagmins. Nature 375, 594–599 (1995).

    Article  CAS  Google Scholar 

  20. Gerona, R.R., Larsen, E.C., Kowalchyk, J.A. & Martin, T.F. The C terminus of SNAP25 is essential for Ca2+-dependent binding of synaptotagmin to SNARE complexes. J. Biol. Chem. 275, 6328–6336 (2000).

    Article  CAS  Google Scholar 

  21. Littleton, J.T., Stern, M., Perin, M. & Bellen, H.J. Calcium dependence of neurotransmitter release and rate of spontaneous vesicle fusions are altered in Drosophila synaptotagmin mutants. Proc. Natl. Acad. Sci. USA 91, 10888–10892 (1994).

    Article  CAS  Google Scholar 

  22. DiAntonio, A. & Schwarz, T.L. The effect on synaptic physiology of synaptotagmin mutations in Drosophila. Neuron 12, 909–920 (1994).

    Article  CAS  Google Scholar 

  23. Kee, Y. & Scheller, R.H. Localization of synaptotagmin-binding domains on syntaxin. J. Neurosci. 16, 1975–1981 (1996).

    Article  CAS  Google Scholar 

  24. Littleton, J.T., Serano, T.L., Rubin, G.M., Ganetzky, B. & Chapman, E.R. Synaptic function modulated by changes in the ratio of synaptotagmin I and IV. Nature 400, 757–760 (1999).

    Article  CAS  Google Scholar 

  25. Littleton, J.T. et al. Synaptotagmin mutants reveal essential functions for the C2B domain in Ca2+-triggered fusion and recycling of synaptic vesicles in vivo. J. Neurosci. 21, 1421–1433 (2001).

    Article  CAS  Google Scholar 

  26. Davis, A.F. et al. Kinetics of synaptotagmin responses to Ca2+ and assembly with the core SNARE complex onto membranes. Neuron 24, 363–376 (1999).

    Article  CAS  Google Scholar 

  27. Brose, N., Petrenko, A.G., Sudhof, T.C. & Jahn, R. Synaptotagmin: a calcium sensor on the synaptic vesicle surface. Science 256, 1021–1025 (1992).

    Article  CAS  Google Scholar 

  28. Zhang, X., Rizo, J. & Sudhof, T.C. Mechanism of phospholipid binding by the C2A-domain of synaptotagmin I. Biochemistry 37, 12395–12403 (1998).

    Article  CAS  Google Scholar 

  29. Bai, J. Earles, C.A. Lewis, J.L. & Chapman, E.R. Membrane-embedded synaptotagmin penetrates cis or trans target membranes and clusters via a novel mechanism. J. Biol. Chem. 275, 25427–25435 (2000).

    Article  CAS  Google Scholar 

  30. Hu, K. et al. Vesicular restriction of synaptobrevin suggests a role for calcium in membrane fusion. Nature 415, 646–650 (2002).

    Article  CAS  Google Scholar 

  31. Quetglas, S., Leveque, C., Miquelis, R., Sato, K. & Seagar, M. Ca2+-dependent regulation of synaptic SNARE complex assembly via a calmodulin- and phospholipid-binding domain of synaptobrevin. Proc. Natl. Acad. Sci. USA 97, 9695–9700 (2000).

    Article  CAS  Google Scholar 

  32. Hubbell, W.L., Gross, A., Langen, R. & Lietzow, M.A. Recent advances in site-directed spin labeling of proteins. Curr. Opin. Struct. Biol. 8, 649–656 (1998).

    Article  CAS  Google Scholar 

  33. Rabenstein, M.D. & Shin, Y.-K. A peptide from the heptad repeat of human immunodeficiency virus gp41 shows both membrane binding and coiled-coil formation. Biochemistry 34, 13390–13397 (1995).

    Article  CAS  Google Scholar 

  34. Thorgeirsson, T.E., Russell, C.J., King, D.S. & Shin, Y.-K. Direct determination of the membrane affinities of individual amino acids. Biochemistry 35, 1803–1809 (1996).

    Article  CAS  Google Scholar 

  35. Wimley, W.C. & White, S.H. Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat. Struct. Biol. 3, 842–848 (1996).

    Article  CAS  Google Scholar 

  36. Abrams, F.S. & London, E. Calibration of the parallax fluorescence quenching method for determination of membrane penetration depth: refinement and comparison of quenching by spin-labeled and brominated lipids. Biochemistry 31, 5312–5322 (1992).

    Article  CAS  Google Scholar 

  37. Chattopadhyay, A. & London, E. Parallax method for direct measurement of membrane penetration depth utilizing fluorescence quenching by spin-labeled phospholipids. Biochemistry 26, 39–45 (1987).

    Article  CAS  Google Scholar 

  38. Columbus, L. & Hubbell, W.L. A new spin on protein dynamics. Trends Biochem. Sci. 27, 288–295 (2002).

    Article  CAS  Google Scholar 

  39. Altenbach, C., Greenhalgh, D.A., Khorana, H.G. & Hubbell, W.L. A collision gradient method to determine the immersion depth of nitroxides in lipid bilayers: application to spin-labeled mutants of bacteriorhodopsin. Proc. Natl. Acad. Sci. USA 91, 1667–1671 (1994).

    Article  CAS  Google Scholar 

  40. Altenbach, C., Marti, T., Khorana, H.G. & Hubbell, W.L. Transmembrane protein structure: spin labeling of bacteriorhodopsin mutants. Science 248, 1088–1092 (1990).

    Article  CAS  Google Scholar 

  41. Hua, S.-Y. & Charlton, M.P. Activity-dependent changes in partial VAMP complexes during neurotransmitter release. Nat. Neurosci. 2, 1078–1083 (1999).

    Article  CAS  Google Scholar 

  42. Melia, T.J. et al. Regulation of membrane fusion by the membrane-proximal coil of the t-SNARE during zippering of SNAREpins. J. Cell Biol. 158, 929–940 (2002).

    Article  CAS  Google Scholar 

  43. Mahal, L.K., Sequeira, S.M., Gureasko, J.M. & Sollner, T.H. Calcium-independent stimulation of membrane fusion and SNAREpin formation by synaptotagmin I. J. Cell Biol. 158, 273–282 (2002).

    Article  CAS  Google Scholar 

  44. Fiebig, K.M., Rice, L.M., Pollock, E. & Brunger, A.T. Folding intermediates of SNARE complex assembly. Nat. Struct. Biol. 6, 117–123 (1999).

    Article  CAS  Google Scholar 

  45. Weimbs, T., Mostov, K., Low, S.H. & Hofmann, K. A model for structural similarity between different SNARE complexes based on sequence relationships. Trends Cell Biol. 8, 260–262 (1998).

    Article  CAS  Google Scholar 

  46. Quetglas, S. et al. Calmodulin and lipid binding to synaptobrevin regulates calcium-dependent exocytosis. EMBO J. 21, 3970–3979 (2002).

    Article  CAS  Google Scholar 

  47. Lang, T., Margittai, M., Holzler, H. & Jahn, R. SNAREs in native plasma membranes are active and readily form core complexes with endogenous and exogenous SNAREs. J Cell Biol. 158, 751–760 (2002).

    Article  CAS  Google Scholar 

  48. Margittai, M., Otto, H. & Jahn, R. A stable interaction between syntaxin 1a and synaptobrevin 2 mediated by their transmembrane domains. FEBS Lett. 446, 40–44 (1999).

    Article  CAS  Google Scholar 

  49. Laage, R., Rohde, J., Brosig, B. & Langosch, D. A conserved membrane-spanning amino acid motif drives homomeric and supports heteromeric assembly of presynaptic SNARE proteins. J. Biol. Chem. 275, 17481–17487 (2000).

    Article  CAS  Google Scholar 

  50. Fleming, K.G. & Engelman, D.M. Computation and mutagenesis suggest a right-handed structure for the synaptobrevin transmembrane dimer. Proteins 45, 313–317 (2001).

    Article  CAS  Google Scholar 

  51. Rabenstein, M.D. & Shin, Y.-K. Determination of the distance between two spin labels attached to a macromolecule. Proc. Natl. Acad. Sci. USA 92, 8239–8243 (1995).

    Article  CAS  Google Scholar 

  52. Bowen, M.E., Engelman, D.M. & Brunger A.T. Mutational analysis of synaptobrevin transmembrane domain oligomerization. Biochemistry 41, 15861–15866.

  53. Xu, T. et al. Inhibition of SNARE complex assembly differentially affects kinetic components of exocytosis. Cell 99, 713–722 (1999).

    Article  CAS  Google Scholar 

  54. Chen, Y.A., Scales, S.J. & Scheller, R.H. Sequential SNARE assembly underlies priming and triggering of exocytosis. Neuron 30, 161–170 (2001).

    Article  CAS  Google Scholar 

  55. Kweon, D.-H., Kim, C.S. & Shin Y.-K. Insertion of the membrane proximal region of the neuronal SNARE coiled coil into the membrane. J. Biol. Chem. 278, 12367–12373 (2003).

    Article  CAS  Google Scholar 

  56. Jahn, R. & Südhof, T.C. Synaptic vesicles and exocytosis. Annu. Rev. Neurosci. 17, 219–246 (1994).

    Article  CAS  Google Scholar 

  57. Macosko, J.C., Kim, C.-H. & Shin, Y.-K. The membrane topology of the fusion peptide region of influenza hemagglutinin determined by spin-labeling EPR. J. Mol. Biol. 267, 1139–1148 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support for this work was provided by the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeon-Kyun Shin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kweon, DH., Kim, C. & Shin, YK. Regulation of neuronal SNARE assembly by the membrane. Nat Struct Mol Biol 10, 440–447 (2003). https://doi.org/10.1038/nsb928

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb928

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing