Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of the Tsg101 UEV domain in complex with the PTAP motif of the HIV-1 p6 protein

Abstract

The structural proteins of HIV and Ebola display PTAP peptide motifs (termed 'late domains') that recruit the human protein Tsg101 to facilitate virus budding. Here we present the solution structure of the UEV (ubiquitin E2 variant) binding domain of Tsg101 in complex with a PTAP peptide that spans the late domain of HIV-1 p6Gag. The UEV domain of Tsg101 resembles E2 ubiquitin-conjugating enzymes, and the PTAP peptide binds in a bifurcated groove above the vestigial enzyme active site. Each PTAP residue makes important contacts, and the Ala 9-Pro 10 dipeptide binds in a deep pocket of the UEV domain that resembles the X-Pro binding pockets of SH3 and WW domains. The structure reveals the molecular basis of HIV PTAP late domain function and represents an attractive starting point for the design of novel inhibitors of virus budding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representations of human Tsg101 (390 amino acids) and HIV-1 Gag (500 amino acids).
Figure 2: Determination of the Tsg101 UEV–PTAP peptide complex structure.
Figure 3: Molecular recognition in the Tsg101 UEV–PTAP peptide complex.
Figure 4: Proline recognition by Tsg101 UEV.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Freed, E.O. J. Virol. 76, 4679–4687 (2002).

    Article  CAS  Google Scholar 

  2. Pornillos, O.P., Garrus, J.E. & Sundquist, W.I. Trends Cell Biol. in the press (2002).

  3. Göttlinger, H.G. AIDS 15, S13–S20 (2001).

    Article  Google Scholar 

  4. Göttlinger, H.G., Dorfman, T., Sodroski, J.G. & Haseltine, W.A. Proc. Natl. Acad. Sci. USA 88, 3195–3199 (1991).

    Article  Google Scholar 

  5. Huang, M., Orenstein, J.M., Martin, M.A. & Freed, E.O. J. Virol. 69, 6810–6818 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Demirov, D.G., Orenstein, J.M. & Freed, E.O. J. Virol. 76, 105–117 (2002).

    Article  CAS  Google Scholar 

  7. VerPlank, L. et al. Proc. Natl. Acad. Sci. USA 98, 7724–7729 (2001).

    Article  CAS  Google Scholar 

  8. Garrus, J.E. et al. Cell 107, 55–65 (2001).

    Article  CAS  Google Scholar 

  9. Martin-Serrano, J., Zang, T. & Bieniasz, P.D. Nature Med. 7, 1313–1319 (2001).

    Article  CAS  Google Scholar 

  10. Demirov, D.G., Ono, A., Orenstein, J.M. & Freed, E.O. Proc. Natl. Acad. Sci. USA 99, 955–960 (2002).

    Article  CAS  Google Scholar 

  11. Strack, B., Calistri, A., Accola, M.A., Palu, G. & Göttlinger, H.G. Proc. Natl. Acad. Sci. USA 97, 13063–13068 (2000).

    Article  CAS  Google Scholar 

  12. Schubert, U. et al. Proc. Natl. Acad. Sci. USA 97, 13057–13062 (2000).

    Article  CAS  Google Scholar 

  13. Patnaik, A., Chau, V. & Wills, J.W. Proc. Natl. Acad. Sci. USA 97, 13069–13074 (2000).

    Article  CAS  Google Scholar 

  14. Vogt, V.M. Proc. Natl. Acad. Sci. USA 97, 12945–12947 (2000).

    Article  CAS  Google Scholar 

  15. Harty, R.N. et al. J. Virol. 75, 10623–10629 (2001).

    Article  CAS  Google Scholar 

  16. Harty, R.N., Brown, M.E., Wang, G., Huibregtse, J. & Hayes, F.P. Proc. Natl. Acad. Sci. USA 97, 13871–13876 (2000).

    Article  CAS  Google Scholar 

  17. Hicke, L. Cell 106, 527–530 (2001).

    Article  CAS  Google Scholar 

  18. Strack, B., Calistri, A. & Göttlinger, H.G. J. Virol. 76, 5472–5479 (2002).

    Article  CAS  Google Scholar 

  19. Ott, D.E. et al. J. Virol. 72, 2962–2968 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ott, D.E., Coren, L.V., Chertova, E.N., Gagliardi, T.D. & Schubert, U. Virology 278, 111–121 (2000).

    Article  CAS  Google Scholar 

  21. Lemmon, S.K. & Traub, L.M. Curr. Opin. Cell Biol. 12, 457–466 (2000).

    Article  CAS  Google Scholar 

  22. Katzmann, D.J., Babst, M. & Emr, S.D. Cell 106, 145–155 (2001).

    Article  CAS  Google Scholar 

  23. Bishop, N., Horman, A. & Woodman, P. J. Cell Biol. 157, 91–102 (2002).

    Article  CAS  Google Scholar 

  24. Dupre, S., Volland, C. & Haguenauer-Tsapis, R. Curr. Biol. 11, R932–R934 (2001).

    Article  CAS  Google Scholar 

  25. Pornillos, O. et al. EMBO J. 21, 2397–2406 (2002).

    Article  CAS  Google Scholar 

  26. VanDemark, A.P., Hofmann, R.M., Tsui, C., Pickart, C.M. & Wolberger, C. Cell 105, 711–720 (2001).

    Article  CAS  Google Scholar 

  27. Moraes, T.F. et al. Nature Struct. Biol. 8, 669–673 (2001).

    Article  CAS  Google Scholar 

  28. Koonin, E.V. & Abagyan, R.A. Nature Genet. 16, 330–331 (1997).

    Article  CAS  Google Scholar 

  29. Ponting, C.P., Cai, Y.D. & Bork, P. J. Mol. Med. 75, 467–469 (1997).

    Article  CAS  Google Scholar 

  30. Sancho, E. et al. Mol. Cell. Biol. 18, 576–589 (1998).

    Article  CAS  Google Scholar 

  31. Pickart, C.M. Annu. Rev. Biochem. 70, 503–533 (2001).

    Article  CAS  Google Scholar 

  32. Zarrinpar, A. & Lim, W.A. Nature Struct. Biol. 7, 611–613 (2000).

    Article  CAS  Google Scholar 

  33. Kay, B.K., Williamson, M.P. & Sudol, M. FASEB J. 14, 231–241 (2000).

    Article  CAS  Google Scholar 

  34. Huang, X. et al. Nature Struct. Biol. 7, 634–638 (2000).

    Article  CAS  Google Scholar 

  35. Wittekind, M. et al. J. Mol. Biol. 267, 933–952 (1997).

    Article  CAS  Google Scholar 

  36. Kuiken, C. et al. HIV Sequence Compendium (Los Alamos National Laboratory, Los Alamos; 2000).

    Book  Google Scholar 

  37. Piper, R.C., Cooper, A.A., Yang, H. & Stevens, T.H. J. Cell Biol. 131, 603–617 (1995).

    Article  CAS  Google Scholar 

  38. Raiborg, C., Bache, K.G., Mehlum, A. & Stenmark, H. Biochem. Soc. Trans. 29, 472–475 (2001).

    Article  CAS  Google Scholar 

  39. Polo, S. et al. Nature 416, 451–455 (2002).

    Article  CAS  Google Scholar 

  40. Pickart, C.M. Mol. Cell 8, 499–504 (2001).

    Article  CAS  Google Scholar 

  41. Nguyen, J.T., Turck, C.W., Cohen, F.E., Zuckermann, R.N. & Lim, W.A. Science 282, 2088–2092 (1998).

    Article  CAS  Google Scholar 

  42. Nguyen, J.T. et al. Chem. Biol. 7, 463–473 (2000).

    Article  CAS  Google Scholar 

  43. Dadlez, M. & Kim, P.S. Biochemistry 35, 16153–16164 (1996).

    Article  CAS  Google Scholar 

  44. Ferentz, A.E. & Wagner, G. Q. Rev. Biophys. 33, 29–65 (2000).

    Article  CAS  Google Scholar 

  45. Ogura, K., Terasawa, H. & Inagaki, F. J. Magn. Reson. B 112, 63–68 (1996).

    Article  CAS  Google Scholar 

  46. Ikura, M. & Bax, A. J. Am. Chem. Soc. 114, 2433–2440 (1992).

    Article  CAS  Google Scholar 

  47. Zwahlen, C. et al. J. Am. Chem. Soc. 119, 6711–6721 (1997).

    Article  CAS  Google Scholar 

  48. Güntert, P., Mumenthaler, C. & Wüthrich, K. J. Mol. Biol. 273, 283–298 (1997).

    Article  Google Scholar 

  49. Brünger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  50. Laskowski, R.A., Rullmann, J.A., MacArthur, M.W., Kaptein, R. & Thornton, J.M. J. Biomol. NMR 8, 477–486 (1996).

    Article  CAS  Google Scholar 

  51. Koradi, R., Billeter, M. & Wüthrich, K. J. Mol. Graph. 14, 51–55 (1996).

    Article  CAS  Google Scholar 

  52. Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  53. Wallace, A.C., Laskowski, R.A. & Thornton, J.M. Protein Eng. 8, 127–134 (1995).

    Article  CAS  Google Scholar 

  54. Feng, G.H., Lih, C.J. & Cohen, S.N. Cancer Res. 60, 1736–1741 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Schackmann and S. Endicott for peptide synthesis and purification, D. Edwards for technical NMR support and E. Ross for computer support. This work was supported by NIH funding to W.I.S. The Utah Biomolecular NMR Facility is supported by grants from the NIH and the NSF.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Darrell R. Davis or Wesley I. Sundquist.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pornillos, O., Alam, S., Davis, D. et al. Structure of the Tsg101 UEV domain in complex with the PTAP motif of the HIV-1 p6 protein. Nat Struct Mol Biol 9, 812–817 (2002). https://doi.org/10.1038/nsb856

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb856

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing