Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Origins and kinetic consequences of diversity in Sup35 yeast prion fibers

Abstract

A remarkable feature of prions is that infectious particles composed of the same prion protein can give rise to different phenotypes. This strain phenomenon suggests that a single prion protein can adopt multiple infectious conformations. Here we use a novel single fiber growth assay to examine the heterogeneity of amyloid fibers formed by the yeast Sup35 prion protein. Sup35 spontaneously forms multiple, distinct and faithfully propagating fiber types, which differ dramatically both in their degrees of polarity and overall growth rates. Both in terms of the number of distinct self-propagating fiber types, as well as the ability of these differences to dictate the rate of prion growth, this diversity is well suited to account for the range of prion strain phenotypes observed in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NM–HA3 and NM–HA*3 are equivalent except in their affinity for HA antibody.
Figure 2: Visualization of growth from single Sup35-NM fibers.
Figure 3: Sup35-NM fibers have intrinsic differences in their polarities.
Figure 4: At least four subpopulations of Sup35-NM fibers exist.
Figure 5: Elongation rate and polarity are faithfully transmitted by individual Sup35-NM fibers.

Similar content being viewed by others

References

  1. Prusiner, S.B. Prions. Proc. Natl. Acad. Sci. USA 95, 13363–13383 (1998).

    Article  CAS  Google Scholar 

  2. Wickner, R.B. et al. Prions in Saccharomyces and Podospora spp.: protein-based inheritance. Microbiol. Mol. Biol. Rev. 63, 844–861 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhou, P. et al. The yeast non-Mendelian factor [ETA+] is a variant of [PSI+], a prion-like form of release factor eRF3. EMBO J. 18, 1182–1191 (1999).

    Article  CAS  Google Scholar 

  4. Sondheimer, N. & Lindquist, S. Rnq1: an epigenetic modifier of protein function in yeast. Mol. Cell 5, 163–172 (2000).

    Article  CAS  Google Scholar 

  5. Derkatch, I.L., Bradley, M.E., Hong, J.Y. & Liebman, S.W. Prions affect the appearance of other prions: the story of [PIN+]. Cell 106, 171–182 (2001).

    Article  CAS  Google Scholar 

  6. Osherovich, L.Z. & Weissman, J.S. Multiple Gln/Asn-rich prion domains confer susceptibility to induction of the yeast [PSI+] prion. Cell 106, 183–194 (2001).

    Article  CAS  Google Scholar 

  7. Kelly, J.W. The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways. Curr. Opin. Struct. Biol. 8, 101–106 (1998).

    Article  CAS  Google Scholar 

  8. Dobson, C.M. Protein misfolding, evolution and disease. Trends Biochem. Sci. 24, 329–332 (1999).

    Article  CAS  Google Scholar 

  9. Perutz, M.F. Glutamine repeats and neurodegenerative diseases: molecular aspects. Trends Biochem. Sci. 24, 58–63 (1999).

    Article  CAS  Google Scholar 

  10. Chien, P. & Weissman, J.S. Conformational diversity in a yeast prion dictates its seeding specificity. Nature 410, 223–227 (2001).

    Article  CAS  Google Scholar 

  11. Telling, G.C. et al. Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity. Science 274, 2079–2082 (1996).

    Article  CAS  Google Scholar 

  12. Safar, J., Cohen, F.E. & Prusiner, S.B. Quantitative traits of prion strains are enciphered in the conformation of the prion protein. Arch. Virol. Suppl. 16, 227–235 (2000).

    Google Scholar 

  13. Bessen, R.A. et al. Non-genetic propagation of strain-specific properties of scrapie prion protein. Nature 375, 698–700 (1995).

    Article  CAS  Google Scholar 

  14. Caughey, B. Interactions between prion protein isoforms: the kiss of death? Trends Biochem. Sci. 26, 235–242 (2001).

    Article  CAS  Google Scholar 

  15. Serio, T.R. & Lindquist, S.L. [PSI+]: an epigenetic modulator of translation termination efficiency. Annu. Rev. Cell. Dev. Biol. 15, 661–703 (1999).

    Article  CAS  Google Scholar 

  16. Ter-Avanesyan, M.D. et al. Deletion analysis of the SUP35 gene of the yeast Saccharomyces cerevisiae reveals two non-overlapping functional regions in the encoded protein. Mol. Microbiol. 7, 683–692 (1993).

    Article  CAS  Google Scholar 

  17. Parham, S.N., Resende, C.G. & Tuite, M.F. Oligopeptide repeats in the yeast protein Sup35p stabilize intermolecular prion interactions. EMBO J. 20, 2111–2119 (2001).

    Article  CAS  Google Scholar 

  18. Glover, J.R. et al. Self-seeded fibers formed by Sup35, the protein determinant of [PSI+], a heritable prion-like factor of S. cerevisiae. Cell 89, 811–819 (1997).

    Article  CAS  Google Scholar 

  19. Paushkin, S.V., Kushnirov, V.V., Smirnov, V.N. & TerAvanesyan, M.D. In vitro propagation of the prion-like state of yeast Sup35 protein. Science 277, 381–383 (1997).

    Article  CAS  Google Scholar 

  20. DePace, A.H., Santoso, A., Hillner, P. & Weissman, J.S. A critical role for amino-terminal glutamine/asparagine repeats in the formation and propagation of a yeast prion. Cell 93, 1241–1252 (1998).

    Article  CAS  Google Scholar 

  21. Santoso, A., Chien, P., Osherovich, L.Z. & Weissman, J.S. Molecular basis of a yeast prion species barrier. Cell 100, 277–288 (2000).

    Article  CAS  Google Scholar 

  22. Liu, J.J. & Lindquist, S. Oligopeptide-repeat expansions modulate 'protein-only' inheritance in yeast. Nature 400, 573–576 (1999).

    Article  CAS  Google Scholar 

  23. Sparrer, H.E., Santoso, A., Szoka, F.C. & Weissman, J.S. Evidence for the prion hypothesis: induction of the yeast [PSI+] factor by in vitro-converted Sup35 protein. Science 289, 595–599 (2000).

    Article  CAS  Google Scholar 

  24. Chernoff, Y.O., Lindquist, S.L., Ono, B., Inge-Vechtomov, S.G. & Liebman, S.W. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [PSI+]. Science 268, 880–884 (1995).

    Article  CAS  Google Scholar 

  25. Chernoff, Y.O., Newnam, G.P., Kumar, J., Allen, K. & Zink, A.D. Evidence for a protein mutator in yeast: role of the Hsp70-related chaperone Ssb in formation, stability, and toxicity of the [PSI] prion. Mol. Cell. Biol. 19, 8103–8112 (1999).

    Article  CAS  Google Scholar 

  26. Newnam, G.P., Wegrzyn, R.D., Lindquist, S.L. & Chernoff, Y.O. Antagonistic interactions between yeast chaperones Hsp104 and Hsp70 in prion curing. Mol. Cell. Biol. 19, 1325–1333 (1999).

    Article  CAS  Google Scholar 

  27. Jung, G., Jones, G., Wegrzyn, R.D. & Masison, D.C. A role for cytosolic hsp70 in yeast [PSI+] prion propagation and [PSI+] as a cellular stress. Genetics 156, 559–570 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ferreira, P.C., Ness, F., Edwards, S.R., Cox, B.S. & Tuite, M.F. The elimination of the yeast [PSI+] prion by guanidine hydrochloride is the result of Hsp104 inactivation. Mol. Microbiol. 40, 1357–1369 (2001).

    Article  CAS  Google Scholar 

  29. Jung, G. & Masison, D.C. Guanidine hydrochloride inhibits Hsp104 activity in vivo: a possible explanation for its effect in curing yeast prions. Curr. Microbiol. 43, 7–10 (2001).

    Article  CAS  Google Scholar 

  30. Derkatch, I.L., Chernoff, Y.O., Kushnirov, V.V., Inge-Vechtomov, S.G. & Liebman, S.W. Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics 144, 1375–1386 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kochneva-Pervukhova, N.V. et al. [Psi+] prion generation in yeast: characterization of the 'strain' difference. Yeast 18, 489–497 (2001).

    Article  CAS  Google Scholar 

  32. Uptain, S.M., Sawicki, G.J., Caughey, B. & Lindquist, S. Strains of [PSI+] are distinguished by their efficiencies of prion-mediated conformational conversion. EMBO J. 20, 6236–6245 (2001).

    Article  CAS  Google Scholar 

  33. King, C.Y. Supporting the structural basis of prion strains: induction and identification of [PSI] variants. J. Mol. Biol. 307, 1247–1260 (2001).

    Article  CAS  Google Scholar 

  34. Goldsbury, C., Kistler, J., Aebi, U., Arvinte, T. & Cooper, G.J. Watching amyloid fibrils grow by time-lapse atomic force microscopy. J. Mol. Biol. 285, 33–39 (1999).

    Article  CAS  Google Scholar 

  35. Scheibel, T., Kowal, A.S., Bloom, J.D. & Lindquist, S.L. Bidirectional amyloid fiber growth for a yeast prion determinant. Curr. Biol. 11, 366–369 (2001).

    Article  CAS  Google Scholar 

  36. Li, L. & Lindquist, S. Creating a protein-based element of inheritance. Science 287, 661–664 (2000).

    Article  CAS  Google Scholar 

  37. Patino, M.M., Liu, J.J., Glover, J.R. & Lindquist, S. Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science 273, 622–626 (1996).

    Article  CAS  Google Scholar 

  38. Inoue, Y., Kishimoto, A., Hirao, J., Yoshida, M. & Taguchi, H. Strong growth polarity of yeast prion fiber revealed by single fiber imaging. J. Biol. Chem. 276, 35227–35230 (2001).

    Article  CAS  Google Scholar 

  39. Blackley, H.K. et al. In-situ atomic force microscopy study of β-amyloid fibrillization. J. Mol. Biol. 298, 833–840 (2000).

    Article  CAS  Google Scholar 

  40. Goldsbury, C.S. et al. Polymorphic fibrillar assembly of human amylin. J. Struct. Biol. 119, 17–27 (1997).

    Article  CAS  Google Scholar 

  41. Chamberlain, A.K. et al. Ultrastructural organization of amyloid fibrils by atomic force microscopy. Biophys. J. 79, 3282–3293 (2000).

    Article  CAS  Google Scholar 

  42. Harper, J.D., Wong, S.S., Lieber, C.M. & Lansbury, P.T. Observation of metastable Aβ amyloid protofibrils by atomic force microscopy. Chem. Biol. 4, 119–125 (1997).

    Article  CAS  Google Scholar 

  43. Kad, N.M., Thomson, N.H., Smith, D.P., Smith, D.A. & Radford, S.E. β(2)-microglobulin and its deamidated variant, N17D, form amyloid fibrils with a range of morphologies in vitro. J. Mol. Biol. 313, 559–571 (2001).

    Article  CAS  Google Scholar 

  44. Ionescu-Zanetti, C. et al. Monitoring the assembly of Ig light-chain amyloid fibrils by atomic force microscopy. Proc. Natl. Acad. Sci. USA 96, 13175–13179 (1999).

    Article  CAS  Google Scholar 

  45. Bauer, H.H. et al. Architecture and polymorphism of fibrillar supramolecular assemblies produced by in vitro aggregation of human calcitonin. J. Struct. Biol. 115, 1–15 (1995).

    Article  CAS  Google Scholar 

  46. Serpell, L.C. et al. The protofilament substructure of amyloid fibrils. J. Mol. Biol. 300, 1033–1039 (2000).

    Article  CAS  Google Scholar 

  47. Jiménez, J.L. et al. Cryo-electron microscopy structure of an SH3 amyloid fibril and model of the molecular packing. EMBO J. 18, 815–821 (1999).

    Article  Google Scholar 

  48. Kelly, J.W. Amyloid fibril formation and protein misassembly: a structural quest for insights into amyloid and prion diseases. Structure 5, 595–600 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Rogers and R. Vale for instruction and use of their AFM. We also would like to thank R.D. Mullins, E. O'Shea, W. Lim, P. Chien and V. Denic, as well as the Weissman lab members, for helpful discussion and critical reading of the manuscript. This work was supported by the Howard Hughes Medical Institute, a Howard Hughes Medical Institute predoctoral fellowship (A.H.D.), the David and Lucile Packard Foundation and the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan S. Weissman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DePace, A., Weissman, J. Origins and kinetic consequences of diversity in Sup35 yeast prion fibers. Nat Struct Mol Biol 9, 389–396 (2002). https://doi.org/10.1038/nsb786

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb786

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing