Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Engineered metal binding sites map the heterogeneous folding landscape of a coiled coil

Abstract

To address whether proteins fold along multiple pathways, i,i+4 bi-histidine metal binding sites are introduced into dimeric and crosslinked versions of the leucine zipper region of the growth control transcription factor, GCN4. Divalent metal ion binding enhances both the equilibrium and folding activation free energies for GCN4. The enhancement of folding rates quantifies the fraction of molecules that have the binding site in a helical geometry in the transition state. Hence, this new method, termed Ψ-analysis, identifies the degree of pathway heterogeneity for a protein that folds in a two-state manner, a capability that is generally unavailable even with single molecule methods. Adjusting metal ion concentration continuously varies the stability of the bi-histidine region without additional structural perturbation to the protein. For dimeric and crosslinked versions, the accompanying changes in kinetic barrier heights at each metal ion concentration maps the folding landscape as well as establishes the importance of connectivity in pathway selection. Furthermore, this method can be generalized to other biophysical studies, where the ability to continuously tune the stability of a particular region with no extraneous structural perturbation is advantageous.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Designed metal ion binding variants of the coiled coil.
Figure 2: Denaturant dependence of folding at different metal concentrations.
Figure 3: Determining folding models.

Similar content being viewed by others

References

  1. Fersht, A.R., Itzhaki, L.S., elMasry, N.F., Matthews, J.M. & Otzen, D.E. Proc. Natl. Acad. Sci. USA 91, 10426–10429 (1994).

    Article  CAS  Google Scholar 

  2. Martinez, J.C., Pisabarro, M.T. & Serrano, L. Nature Struct. Biol. 5, 721–729 (1998).

    Article  CAS  Google Scholar 

  3. Grantcharova, V.P., Riddle, D.S. & Baker, D. Proc. Natl. Acad. Sci. USA 97, 7084–7089 (2000).

    Article  CAS  Google Scholar 

  4. Burton, R.E., Myers, J.K. & Oas, T.G. Biochemistry 37, 5337–5343 (1998).

    Article  CAS  Google Scholar 

  5. Moran, L.B., Schneider, J.P., Kentsis, A., Reddy, G.A. & Sosnick, T.R. Proc. Natl. Acad. Sci. USA 96, 10699–10704 (1999).

    Article  CAS  Google Scholar 

  6. Dill, K.A. & Chan, H.S. Nature Struct. Biol. 4, 19 (1997).

    Google Scholar 

  7. Socci, N.D., Onuchic, J.N. & Wolynes, P.G. Proteins 32, 136–158 (1998).

    Article  CAS  Google Scholar 

  8. Shakhnovich, E.I. Folding Des. 3, 108–111 (1998).

    Article  Google Scholar 

  9. Thirumalai, D. & Klimov, D.K. Folding Des. 3, 112–118 (1998).

    Article  Google Scholar 

  10. Baldwin, R.L. J. Biomol. NMR 5, 103–109 (1995).

    Article  CAS  Google Scholar 

  11. Sosnick, T.R., Jackson, S., Wilk, R.M., Englander, S.W. & DeGrado, W.F. Proteins 24, 427–432 (1996).

    Article  CAS  Google Scholar 

  12. Segawa, S. & Sugihara, M. Biopolymers 23, 2489–2498. (1984).

    Article  CAS  Google Scholar 

  13. Sancho, J., Meiering, E.M. & Fersht, A.R. J. Mol. Biol. 221, 1007–1014. (1991).

    Article  CAS  Google Scholar 

  14. Ghadiri, M. & Choi, C. J. Am. Chem. Soc. 112, 1630–1632 (1990).

    Article  CAS  Google Scholar 

  15. Zitzewitz, J.A., Ibarra-Molero, B., Fishel, D.R., Terry, K.L. & Matthews, C.R. J. Mol. Biol. 296, 1105–1116 (2000).

    Article  CAS  Google Scholar 

  16. Krantz, B.A., Moran, L.B., Kentsis, A. & Sosnick, T.R. Nature Struct. Biol. 7, 62–71 (2000).

    Article  CAS  Google Scholar 

  17. Kentsis, A. & Sosnick, T.R. Biochemistry 37, 14613–14622 (1998).

    Article  CAS  Google Scholar 

  18. Ibarra-Molero, B., Makhatadze, G.I. & Matthews, C.R. Biochemistry 40, 719–731. (2001).

    Article  CAS  Google Scholar 

  19. Grantcharova, V., Alm, E.J., Baker, D. & Horwich, A.L. Curr. Opin. Struct. Biol. 11, 70–82. (2001).

    Article  CAS  Google Scholar 

  20. Martinez, J.C. & Serrano, L. Nature Struct. Biol. 6, 1010–1016. (1999).

    Article  CAS  Google Scholar 

  21. Viguera, A.R. & Serrano, L. Nature Struct. Biol. 4, 939–946 (1997).

    Article  CAS  Google Scholar 

  22. Guerois, R. & Serrano, L. J. Mol. Biol. 304, 967–982. (2000).

    Article  CAS  Google Scholar 

  23. Kim, D.E., Yi, Q., Gladwin, S.T., Goldberg, J.M. & Baker, D. J. Mol. Biol. 284, 807–815 (1998).

    Article  CAS  Google Scholar 

  24. Viguera, A.R., Serrano, L. & Wilmanns, M. Nature Struct. Biol. 3, 874–880 (1996).

    Article  CAS  Google Scholar 

  25. Hennecke, J., Sebbel, P. & Glockshuber, R. J. Mol. Biol. 286, 1197–1215 (1999).

    Article  CAS  Google Scholar 

  26. Grantcharova, V.P. & Baker, D. J. Mol. Biol. 306, 555–563 (2001).

    Article  CAS  Google Scholar 

  27. Otzen, D.E. & Fersht, A.R. Biochemistry 37, 8139–8146 (1998).

    Article  CAS  Google Scholar 

  28. Zhuang, X. et al. Science 288, 2048–2051 (2000).

    Article  CAS  Google Scholar 

  29. Krantz, B.A. & Sosnick, T.R. Biochemistry 39, 11696–11701 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Meredith, X. Fang, T. Pan, N. Kallenbach, S.W. Englander, D. Baker, A. Fernández, A. Kossiakoff and our group members for numerous enlightening discussions. We also thank G. Reddy for peptide synthesis supported by a grant from the National Cancer Institute. This work was supported by grants from the National Institutes of Health and The Packard Foundation Interdisciplinary Science Program (T.R.S., P. Thiyagarajan, S. Berry, D. Lynn and S. Meredith).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobin R. Sosnick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krantz, B., Sosnick, T. Engineered metal binding sites map the heterogeneous folding landscape of a coiled coil. Nat Struct Mol Biol 8, 1042–1047 (2001). https://doi.org/10.1038/nsb723

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb723

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing