Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Increased protein backbone conformational entropy upon hydrophobic ligand binding

Abstract

For complexes between proteins and very small hydrophobic ligands, hydrophobic effects alone may be insufficient to outweigh the unfavorable entropic terms resulting from bimolecular association. NMR relaxation experiments indicate that the backbone flexibility of mouse major urinary protein increases upon binding the hydrophobic mouse pheromone 2-sec-butyl-4,5-dihydrothiazole. The associated increase in backbone conformational entropy of the protein appears to make a substantial contribution toward stabilization of the protein–pheromone complex. This term is likely comparable in magnitude to other important free energy contributions to binding and may represent a general mechanism to promote binding of very small ligands to macromolecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stereo ribbon diagram of the MUP-I–pheromone complex.
Figure 2: a, 15N longitudinal relaxation rates (R1); b, 15N transverse relaxation rates (R2); c, 1H-15N NOEs; and d, generalized order parameters (S2) for each residue in free MUP-I (blue) and the MUP-I–pheromone complex (red).
Figure 3: Stereo representation of the MUP-I–pheromone complex color coded according to the changes in order parameter observed upon ligand binding (ΔS2 = S2(complex) - S2(free protein)).

Similar content being viewed by others

References

  1. Page, M.I. & Jencks, W.P. Proc. Natl. Acad. Sci. USA 68, 1678–1683 (1971).

    Article  CAS  Google Scholar 

  2. Tidor, B. & Karplus, M. J. Mol. Biol. 238, 405–414 (1994).

    Article  CAS  Google Scholar 

  3. Janin, J. & Chothia, C. Biochemistry 17, 2943–2948 (1978).

    Article  CAS  Google Scholar 

  4. Williams, D.H. et al. J. Am. Chem. Soc. 113, 7020– 7030 (1991).

    Article  CAS  Google Scholar 

  5. Tanford, C. The hydrophobic effect: formation of micelles and biological membranes. (John Wiley & Sons, New York; 1980).

    Google Scholar 

  6. Muller, N. Acc. Chem. Res. 23, 23–28 (1990).

    Article  CAS  Google Scholar 

  7. Blokzijl, W. & Engberts, J.B.F.N. Angew. Chem. Int. Edn Engl. 32, 1545–1579 ( 1993).

    Article  Google Scholar 

  8. Karplus, P.A. Protein Sci. 6, 1302–1307 (1997).

    Article  CAS  Google Scholar 

  9. Silverstein, K.A.T., Haymet, A.D.J. & Dill, K.A. J. Am. Chem. Soc. 120, 3166 –3175 (1998).

    Article  CAS  Google Scholar 

  10. Novotny, M., Harvey, S., Jemiolo, B. & Alberts, J. Proc. Natl. Acad. Sci. USA 82, 2059–2061 ( 1986).

    Article  Google Scholar 

  11. Jemiolo, B., Harvey, S. & Novotny, M. Proc. Natl. Acad. Sci. USA 83, 4576–4579 (1986).

    Article  CAS  Google Scholar 

  12. Robertson, D.H.L., Beynon, R.J. & Evershed, R.P. J. Chem. Ecol. 19, 1405– 1416 (1992).

    Article  Google Scholar 

  13. Hurst, J.L., Robertson, D.H.L. & Beynon R.J. Anim. Behav. 55, 1289– 1297 (1998).

    Article  CAS  Google Scholar 

  14. Böcskei, Z. et al. Nature 360, 186– 188 (1992).

    Article  Google Scholar 

  15. Flower, D.R. Biochem J. 318, 1–14 ( 1996).

    Article  CAS  Google Scholar 

  16. Zídek, L. et al. Biochemistry, 38, 9850– 9861(1999).

    Article  Google Scholar 

  17. Akke, M., Brüschweiler, R. & Palmer, A.G. J. Am. Chem. Soc. 115, 9832 –9833 (1993).

    Article  CAS  Google Scholar 

  18. Lipari, G. & Szabo, A. J. Am. Chem. Soc. 104, 4546–4559 (1982).

    Article  CAS  Google Scholar 

  19. Yang, D. & Kay, L.E. J. Mol. Biol. 263 369–382 (1996).

    Article  CAS  Google Scholar 

  20. Fersht, A. Structure and mechanism in protein science: a guide to enzyme catalysis and protein folding. (W.H. Freeman, New York; 1998).

    Google Scholar 

  21. Cheng, J.-W., Lepre, C.A. & Moore, J.M. Biochemistry 33, 4093– 4100 (1994).

    Article  CAS  Google Scholar 

  22. Rischel, C., Madsen, J.C., Anderson, K.V. & Poulsen F.M. Biochemistry 33, 13997–14002 (1994).

    Article  CAS  Google Scholar 

  23. Fushman, D., Weisemann, R., Thuring, H. & Ruterjans, H. J. Biomol. NMR 4, 61–78 (1994).

    Article  CAS  Google Scholar 

  24. Hodson, M.E. & Cistola, D.P. Biochemistry 36, 2278–2290 (1997).

    Article  Google Scholar 

  25. Akke, M., Skelton, N.J., Kördel, J., Palmer, A.G. & Chazin, W.J. Biochemistry 32, 9832–9844 (1993).

    Article  CAS  Google Scholar 

  26. Hodson, M.E. & Cistola, D.P. Biochemistry 36, 1450–1460 (1997).

    Article  Google Scholar 

  27. Yu, L., Zhu, C.-X., Tse-Dinh, Y.-C. & Fesik, S.W. Biochemistry 35, 9661–9666 (1996).

    Article  CAS  Google Scholar 

  28. Farrow, N.A. et al. Biochemistry 33, 5984– 6003 (1994).

    Article  CAS  Google Scholar 

  29. Stivers, J.T., Abeygunawardana, C. & Mildvan, A.S. Biochemistry 35, 16036– 16047 (1996).

    Article  CAS  Google Scholar 

  30. Doig, A.J. & Sternberg, J.E. Protein Sci. 4, 2247–2251 (1995).

    Article  CAS  Google Scholar 

  31. Eisenberg, D. & McLachlan, A.D. Nature 319, 199–203 (1986).

    Article  CAS  Google Scholar 

  32. Chothia, C. & Janin, J. Nature 256, 705–708 (1975).

    Article  CAS  Google Scholar 

  33. Froloff, N., Windemuth, A., & Honig, B. Protein Sci. 6, 1293– 1301 (1997).

    Article  CAS  Google Scholar 

  34. Philippopoulos, M., Mandel, A.M., Palmer, A.G. & Lim, C. Proteins Struct. Funct. Genet. 28, 481–493 (1997).

    Article  CAS  Google Scholar 

  35. Novotny, M.V. et al. Experientia 51, 738– 743 (1995).

    Article  CAS  Google Scholar 

  36. Wüthrich, K. NMR of proteins and nucleic acids. (John Wiley & Sons, New York; 1986).

    Book  Google Scholar 

  37. Mandel, A.M., Akke, M. & Palmer, A.G. J. Mol. Biol. 246 144– 163 (1995).

    Article  CAS  Google Scholar 

  38. Barbato, G., Ikura, M., Kay, L.E., Pastor, R.W., & Bax, A. Biochemistry 31, 5269– 5278 (1992).

    Article  CAS  Google Scholar 

  39. Clore, G.M. et al. J. Am. Chem. Soc. 112, 4989– 4991 (1990).

    Article  CAS  Google Scholar 

  40. Palmer, A.G., Williams, J. & McDermott, A. J. Phys. Chem. 100, 13293– 13310 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank J. Ye for many discussions, M. Seewald for automating the data processing protocol, the Indiana University NMR Facility staff for valuable technical help, and T.S. Widlanski for critical reading of the manuscript. We appreciate the generosity of L.E. Kay (University of Toronto), A.G. Palmer (Columbia University) and M. Akke (Lund University), who provided pulse sequence and data analysis programs. This work was supported by grants to M.J.S. and to M.V.N. from the National Institutes of Health, and by a grant to M.J.S. from the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Milos V. Novotny or Martin J. Stone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zídek, L., Novotny, M. & Stone, M. Increased protein backbone conformational entropy upon hydrophobic ligand binding. Nat Struct Mol Biol 6, 1118–1121 (1999). https://doi.org/10.1038/70057

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/70057

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing