Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A novel endonuclease mechanism directly visualized for I-PpoI

Abstract

A novel mechanism of DNA endonucleolytic cleavage has been visualized for the homing endonuclease I-PpoI by trapping the uncleaved enzyme–substrate complex and comparing it to the previously visualized product complex. This enzyme employs a unique single metal mechanism. A magnesium ion is coordinated by an asparagine residue and two DNA oxygen atoms and stabilizes the phosphoanion transition state and the 3'oxygen leaving group. A hydrolytic water molecule is activated by a histidine residue for an in-line attack on the scissile phosphate. A strained enzyme–substrate–metal complex is formed before cleavage, then relaxed during the reaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electron density difference maps for three catalytic complexes formed by I-PpoI.
Figure 2: Anomalous difference Fourier map of I-PpoI and DNA with bound manganese ion, shown in the same orientation as Fig.1.
Figure 3: Interactions of DNA, solvent and bound cation in the region of the scissile phosphate.
Figure 4: Proposed catalytic mechanism for the I-PpoI/Serratia endonucleases.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Pingoud, A. & Jeltsch, A. Eur. J. Biochem. 246, 1–22 (1997).

    Article  CAS  Google Scholar 

  2. Jurica, M.S. & Stoddard, B.L. Cellular and Molecular Life Sciences 55, 1304–1326 (1999).

    Article  CAS  Google Scholar 

  3. Aggarwal, A.K. & Wah, D.A. Curr. Opin. Struct. Biol. 8, 19–25 (1998).

    Article  CAS  Google Scholar 

  4. Belfort, M. & Roberts, R.J. Nucleic Acids Res. 25, 3379–3388 (1997).

    Article  CAS  Google Scholar 

  5. Belfort, M. & Perlman, P.S. J. Biol. Chem. 270, 30237–30240 (1995).

    Article  CAS  Google Scholar 

  6. Belfort, M., Reaban, M.E., Coetzee, T. & Dalgaard, J.Z. J. Bacteriol. 177, 3897–3903 (1995).

    Article  CAS  Google Scholar 

  7. Pietrokovki, S. Protein Sci. 63, 64–71 (1998).

    Article  Google Scholar 

  8. Dalgaard, J.Z. et al. Nucleic Acids Res. 25, 4626–4638 (1997).

    Article  CAS  Google Scholar 

  9. Silva, G.H., Dalgaard, J.Z., Belfort, M. & Roey, P.V. J. Mol. Biol. 286, 1123–1136 (1999).

    Article  CAS  Google Scholar 

  10. Heath, P.J., Stephens, K.M., Monnat, R.J. & Stoddard, B.L. Nature Struct. Biol. 4, 468–476 (1997).

    Article  CAS  Google Scholar 

  11. Duan, X., Gimble, F.S. & Quiocho, F.A. Cell 89, 555–564 (1997).

    Article  CAS  Google Scholar 

  12. Jurica, M.S., Monnat, R.J. & Stoddard, B.L. Mol. Cell 2, 469–476 (1998).

    Article  CAS  Google Scholar 

  13. Muscarella, D.E. & Vogt, V.M. Cell 56, 443–454 (1989).

    Article  CAS  Google Scholar 

  14. Muscarella, D.E., Ellison, E.L., Ruoff, B.M. & Vogt, V.M. Mol. Cell. Biol. 10, 3386–3396 (1990).

    Article  CAS  Google Scholar 

  15. Lowery, R., Hung, L., Knoche, K. & Bandziulis, R. Promega Notes 38, 8–12 (1992).

    Google Scholar 

  16. Whittmayer, P.K. & Raines, R.T. Biochemistry 35, 1076–1083 (1996).

    Article  Google Scholar 

  17. Ellison, E.L. & Vogt, V.M. Mol. Cell. Biol. 13, 7531–7539 (1993).

    Article  CAS  Google Scholar 

  18. Flick, K.E., Jurica, M.S., Monnat, R.J. & Stoddard, B.L. Nature 394, 96–101 (1998).

    Article  CAS  Google Scholar 

  19. Miller, M.D., Tanner, J., Alpaugh, M., Benedik, M.J. & Krause, K.L. Nature Struct. Biol. 1, 461–468 (1994).

    Article  Google Scholar 

  20. Friedhoff, P. et al. Nucleic Acids Res. 24, 2632–2639 (1996).

    Article  CAS  Google Scholar 

  21. Friedhoff, P. et al. Nature Struct. Biol. 6, 112 (1999).

    Article  CAS  Google Scholar 

  22. Miller, M.D., Cai, J. & Krause, K.L. J. Mol. Biol. 288, 975–987 (1999).

    Article  CAS  Google Scholar 

  23. Friedhoff, P., Franke, I., Krause, K.L. & Pingoud, A. FEBS Lett. 443, 209–214 (1999).

    Article  CAS  Google Scholar 

  24. Cotton, F.A. & Wilkinson, G. in Advanced inorganic chemistry 253–270 (John Wiley and Sons, New York; 1980).

    Google Scholar 

  25. Baldwin, G.S., Sessions, R.B., Erskine, S.G. & Halford, S.E. J. Mol. Biol. 288, 87–103 (1999).

    Article  CAS  Google Scholar 

  26. Flick, K.E. et al. Protein Sci. 6, 2677–2680 (1997).

    Article  CAS  Google Scholar 

  27. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  28. Brünger, A. X-PLOR: a system for X-ray crystallography and NMR. (Yale University Press, New Haven, Connecticut; 1992).

    Google Scholar 

  29. Brünger, A. Acta Crystallogr. D 49, 24–36 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry L. Stoddard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galburt, E., Chevalier, B., Tang, W. et al. A novel endonuclease mechanism directly visualized for I-PpoI. Nat Struct Mol Biol 6, 1096–1099 (1999). https://doi.org/10.1038/70027

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/70027

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing