Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular mechanism for dimerization to regulate the catalytic activity of human cytomegalovirus protease

Abstract

Biochemical studies indicate that dimerization is required for the catalytic activity of herpesvirus proteases, whereas structural studies show a complete active site in each monomer, away from the dimer interface. Here we report kinetic, biophysical and crystallographic characterizations of structure-based mutants in the dimer interface of human cytomegalovirus (HCMV) protease. Such mutations can produce a 1,700-fold reduction in the kcat while having minimal effects on the Km. Dimer stability is not affected by these mutations, suggesting that dimerization itself is insufficient for activity. There are large changes in monomer conformation and dimer organization of the apo S225Y mutant enzyme. However, binding of an activated peptidomimetic inhibitor induced a conformation remarkably similar to the wild type protease. Our studies suggest that appropriate dimer formation may be required to indirectly stabilize the protease oxyanion hole, revealing a novel mechanism for dimerization to regulate enzyme activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The dimer of HCMV protease and selection of residues for mutagenesis.
Figure 2: Kinetic analysis of the dimer interface mutants.
Figure 3: Crystal structure of the free enzyme of the S225Y mutant of HCMV protease.
Figure 4: Solution evidence for conformational changes in dimer interface mutants.
Figure 5: Crystal structure of the S225Y mutant in complex with the inhibitor BILC 408.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Fields, B.N., Knipe, D.M. & Howley, P.M. Fields virology (Lippincott-Raven Press, New York; 1996).

    Google Scholar 

  2. Gibson, W., Welch, A.R. & Hall, M.R.T. Assemblin, a herpes virus serine maturational proteinase and new molecular target for antivirals. Persp. Drug Discovery 2, 413–426 (1995).

    Article  CAS  Google Scholar 

  3. Waxman, L. & Darke, P.L. The herpesvirus proteases as targets for antiviral chemotherapy. Antivir. Chem. Chemother. 11, 1–22 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  4. Tong, L. et al. A new serine-protease fold revealed by the crystal structure of human cytomegalovirus protease. Nature 383, 272–275 (1996).

    Article  CAS  PubMed Central  Google Scholar 

  5. Qiu, X. et al. Unique fold and active site in cytomegalovirus protease. Nature 383, 275–279 (1996).

    Article  CAS  PubMed Central  Google Scholar 

  6. Shieh, H.-S. et al. Three-dimensional structure of human cytomegalovirus protease. Nature 383, 279–282 (1996).

    Article  CAS  PubMed Central  Google Scholar 

  7. Chen, P. et al. Structure of the human cytomegalovirus protease catalytic domain reveals a novel serine protease fold and catalytic triad. Cell 86, 835–843 (1996).

    Article  CAS  PubMed Central  Google Scholar 

  8. Qiu, X. et al. Crystal structure of varicella-zoster virus protease. Proc. Natl. Acad. Sci. USA 94, 2874–2879 (1997).

    Article  CAS  PubMed Central  Google Scholar 

  9. Hoog, S.S. et al. Active site cavity of herpesvirus proteases revealed by the crystal structure of herpes simplex virus protease/inhibitor complex. Biochemistry 36, 14023–14029 (1997).

    Article  CAS  PubMed Central  Google Scholar 

  10. Reiling, K.K., Pray, T.R., Craik, C.S. & Stroud, R.M. Functional consequences of the Kaposi's sarcoma-associated herpesvirus protease structure: regulation of activity and dimerization by conserved structural elements. Biochemistry 39, 12796–12803 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  11. Tong, L. et al. Conserved mode of peptidomimetic inhibition and substrate recognition of human cytomegalovirus protease. Nature Struct. Biol. 5, 819–826 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  12. Tong, L. et al. Experiences from the structure determination of human cytomegalovirus protease. Acta Crystallogr. D 53, 682–690 (1997).

    Article  CAS  PubMed Central  Google Scholar 

  13. Pinko, C. et al. Single-chain recombinant human cytomegalovirus protease. J. Biol. Chem. 270, 23634–23640 (1995).

    Article  CAS  PubMed Central  Google Scholar 

  14. Holskin, B.P. et al. A continuous fluorescence-based assay of human cytomegalovirus protease using a peptide substrate. Anal. Biochem. 227, 148–155 (1995).

    Article  CAS  PubMed Central  Google Scholar 

  15. Cole, J.L. Characterization of human cytomegalovirus protease dimerization by analytical centrifugation. Biochemistry 35, 15601–15610 (1996).

    Article  CAS  PubMed Central  Google Scholar 

  16. Darke, P.L. et al. Active human cytomegalovirus protease is a dimer. J. Biol. Chem. 271, 7445–7449 (1996).

    Article  CAS  PubMed Central  Google Scholar 

  17. Margosiak, S.A., Vanderpool, D.L., Sisson, W., Pinko, C. & Kan, C.-C. Dimerization of the human cytomegalovirus protease: kinetic and biochemical characterization of the catalytic homodimer. Biochemistry 35, 5300–5307 (1996).

    Article  CAS  PubMed Central  Google Scholar 

  18. Tong, L. Combined molecular replacement. Acta Crystallogr. A 52, 782–784 (1996).

    Article  Google Scholar 

  19. Jogl, G., Tao, X., Xu, Y. & Tong, L. COMO: a program for combined molecular replacement. Acta Crystallogr. D 57, 1127–1134 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  20. Liang, P.-H. et al. Site-directed mutagenesis probing the catalytic role of arginines 165 and 166 of human cytomegalovirus protease. Biochemistry 37, 5923–5929 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  21. Bonneau, P.R. et al. Evidence of a conformational change in the human cytomegalovirus protease upon binding of peptidyl-activated carbonyl inhibitors. Biochemistry 36, 12644–12652 (1997).

    Article  CAS  PubMed Central  Google Scholar 

  22. Schechter, I. & Berger, A. On the size of the active site in proteases. I. Papain. Biochem. Biophys. Res. Commun. 27, 157–162 (1967).

    Article  CAS  PubMed Central  Google Scholar 

  23. Ogilvie, W. et al. Peptidomimetic inhibitors of the human cytomegalovirus protease. J. Med. Chem. 40, 4113–4135 (1997).

    Article  CAS  PubMed Central  Google Scholar 

  24. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  25. Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  PubMed Central  Google Scholar 

  26. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  27. Carson, M. Ribbon models of macromolecules. J. Mol. Graphics 5, 103–106 (1987).

    Article  CAS  Google Scholar 

  28. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  PubMed Central  Google Scholar 

  29. Evans, S.V. SETOR: hardware lighted three-dimensional solid model representations of macromolecules. J. Mol. Graphics 11, 134–138 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Olson for help with analytical ultracentrifugation experiments; C. Parish for help with CD measurements; M. Bailey for the synthesis of BILC408; Y. Xu, Z. Yang, C. Ogata and J. Berendzen for help with data collection at the synchrotron radiation source; W.W. Cleland for helpful discussions and the National Institutes of Health (grant to L.T.) for financial support. R.K. is supported by the training program in molecular biophysics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Tong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batra, R., Khayat, R. & Tong, L. Molecular mechanism for dimerization to regulate the catalytic activity of human cytomegalovirus protease. Nat Struct Mol Biol 8, 810–817 (2001). https://doi.org/10.1038/nsb0901-810

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0901-810

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing