Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of interleukin 16 resembles a PDZ domain with an occluded peptide binding site

Abstract

The structure of a folded core of IL-16 is similar to that of intracellular protein modules called PDZ domains. IL-16 is thus the first extracellular protein found to have a PDZ-like fold. However, it does not exhibit normal peptide binding properties of PDZ domains. This is due to alterations of the structure at the 'PDZ-like binding site' of IL-16 (the GLGF cleft): the GLGF cleft of IL-16 is much smaller than those of PDZ-domains and is additionally blocked with a tryptophan side chain at its center. Our experiments indicate also that IL-16 nonspecifically aggregates in solution; but formation of a homo-tetrameric protein is not required, in contrast to previous suggestions, for its chemo-attractant activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, Steady-state heteronuclear 15N{1H}-NOE for the backbone amides of IL-16.
Figure 2: a, Backbone overlay of NMR structures of human IL-16 (residues 28-118).
Figure 3: Sequence alignment of human IL-16, synaptic protein third domain (PSD-95)34, Discs-Large (DLG482–566)24, ZO1408–491, ZO293–176, p5567–153, NOS12–100 and syntrophin (bSYN265–152)22.
Figure 4: a, Comparison of the overall topologies of IL-16 and Dlg_A.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Center, D. M. & Cruikshank, W. W. Modulation of lymphocyte migration by human lymphokines (identification and characterization). J. Immunol. 128, 2563– 2568 (1982).

    CAS  PubMed  Google Scholar 

  2. Cruikshank, W. W. & Center, D. M. Modulation of lymphocyte migration by human lymphokines (purification). J. Immunol. 128 , 2569– 2574 (1982).

    CAS  PubMed  Google Scholar 

  3. Baier, M., Werner, A., Bannert, N., Metzner, K. & Kurth, R. HIV suppression by interleukin-16. Nature 378, – 563 (1995 ).

    Article  CAS  Google Scholar 

  4. Rumsaeng, V., Cruikshank, W. W. & Foster, B. Human mast-cells produce the CD4(+) T-lymphocyte chemoattractant factor, IL-16 . J. Immunol. 159, 2904– 2910 (1997).

    CAS  Google Scholar 

  5. Cruikshank, W. W., Greenstein, J. L., Theodore, A. C. & Center, D. M. Lymphocyte chemoattractant factor induces CD4-dependent intracytoplasmic signaling in lymphocytes. J. Immunol. 146, 2928– 2934 (1991).

    CAS  PubMed  Google Scholar 

  6. Center, D. M., Kornfeld, H. & Cruikshank, W. W. Interleukin 16 and its function as a CD4 ligand. Immunol. Today 17, 476– 481 (1996).

    Article  CAS  Google Scholar 

  7. Baier, M. & Kurth, R. Fighting HIV-1 with IL-16. Nature Med. 3, 605– 606 ( 1997).

    Article  CAS  Google Scholar 

  8. Bazan, J. F. & Schall, T. J. Interleukin-16 or not? Nature 381, 29– 30 ( 1996).

    Article  CAS  Google Scholar 

  9. Mackewicz, C. E., Levy, J. A., Cruikshank, W. W., Kornfeld, H. & Center, D. M. Role of IL-16 in HIV replication . Nature 383, 488– 489 (1996).

    Article  CAS  Google Scholar 

  10. Levy, J. A., Mackewicz, C. E. & Barker, E. Controlling HIV pathogenesis: the role of the noncytotoxic anti-HIV response of CD8+ T cells. Immunol. Today 17, 217– 224 (1996).

    Article  CAS  Google Scholar 

  11. Zhou, P., Goldstein, S., Devadas, K., Tewari, D. & Notkins, A. L. Human CD4+ cells transfected with IL-16 cDNA are resistant to HIV-1 infection: Inhibition of mRNA expression. Nature Med. 3, 659– 664 ( 1997).

    Article  CAS  Google Scholar 

  12. Viglianti, G. A. et al. IL-16 anti-HIV-1 therapy. Nature Med. 3, 938 938 (1998).

    Article  Google Scholar 

  13. Maciaszek, J. W. et al. IL-16 represses HIV-1 promoter activity. J. Immunol. 158, 5– 8 (1997).

    CAS  PubMed  Google Scholar 

  14. Cruikshank, W. W. et al. Molecular and functional analysis of a lymphocyte chemoattractant factor: Association of biologic function with CD4 expression. Proc. Natl. Acad. Sci. USA 91, 5109– 5113 (1994).

    Article  CAS  Google Scholar 

  15. Baier, M., Bannert, N., Werner, A., Lang, K. & Kurth, R. Molecular cloning, sequence, expression, and processing of the interleukin 16 precursor. Proc. Natl. Acad. Sci.USA 94, 5273– 5277 (1997).

    Article  CAS  Google Scholar 

  16. Zhang, Y. et al. Processing and activation of pro-interleukin-16 by caspase-3. J. Biol. Chem. 273, 1144– 1149 (1998).

    Article  CAS  Google Scholar 

  17. Farrow, N. A. et al. Backbone dynamics of a free and a phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry 33, 5984– 6003 ( 1994).

    Article  CAS  Google Scholar 

  18. Edison, A. S., Abildgaard, F., Westler, W. M., Mooberry, E. S. & Markley, J. L. Practical introduction to theory and implementation of multinuclear, multidimensional nuclear magnetic resonance experiments. Meth. Enz. 239, 3– 79 ( 1994).

    Article  CAS  Google Scholar 

  19. Zwahlen, C. et al. Methods for measurement of intermolecular NOEs by multinuclear NMR spectroscopy: Application to a bacteriophage N-peptide/box B RNA complex. J. Am. Chem. Soc. 119, 6711– 6721 (1997).

    Article  CAS  Google Scholar 

  20. Vriend, G. WHAT IF: a molecular modeling and drug design program. J. Mol. Graph. 8, 52– 56 (1990).

    Article  CAS  Google Scholar 

  21. Ponting, C. P. & Phillips, C. DHR domains in syntrophins, neuronal NO synthases and other intracellular proteins Trends Biochem. Sci. 20, 102– 103 ( 1995).

    Article  CAS  Google Scholar 

  22. Songyang, Z. et al. Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science 275, 73– 77 ( 1997).

    Article  CAS  Google Scholar 

  23. Cabral, J. H., Petosa, C. & Sutcliffe, M. J. Crystal structure of a PDZ domain. Nature 382, 649– 652 (1996).

    Article  CAS  Google Scholar 

  24. Shuker, S. B., Hajduk, P. J., Meadows, R. P. & Fesik, S. W. Discovering high-affinity ligands for proteins: SAR by NMR. Science 274, 1531– 1534 (1996).

    Article  CAS  Google Scholar 

  25. Hu, J. S. & Bax, A. 01 angle information from a simple 2-dimensional NMR experiment that identifies trans 3JNC couplings in isotopically enriched proteins. J. Biomol. NMR 9, 323– 328 (1997).

    Article  CAS  Google Scholar 

  26. Hu, J. S. & Bax, A. Determination of . angles and 01 angles in proteins from13C-13C three-bond J-couplings measured by 3-dimensional heteronuclear NMR. How planar is the peptide bond . J. Am. Chem. Soc. 119, 6360– 6368 (1997).

    Article  CAS  Google Scholar 

  27. Vuister, G. W. et al. Measurement of homo- and heteronuclear J-couplings from quantitative J correlation . Meth. Enz. 239, 79– 105 (1994).

    Article  Google Scholar 

  28. Brünger, A.T. X-PLOR, Version 3.1: System for X-ray Crystallography and NMR Yale Univ. Press, New Haven and London, (1992).

    Google Scholar 

  29. Wishart, D. S., Sykes, B. D., & Richards, F. M. Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J. Mol. Biol. 222, 311– 333 (1991).

    Article  CAS  Google Scholar 

  30. Wüthrich, K. NMR of Proteins and Nucleic Acids (Wiley, New York, 1986).

    Book  Google Scholar 

  31. Schultz, J. et al. Specific interactions between the syntrophin PDZ domain and voltage gated sodium channels. Nature Struct. Biol. 5, 19– 24 (1998).

    Article  CAS  Google Scholar 

  32. Koradi, R., Billeter, M. & Wüthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51– 55 (1996).

    Article  CAS  Google Scholar 

  33. Holak, T. A., Gondol, D., Otlewski, J. & Wilusz, T. Determination of the complete 3-dimensional structure of the trypsin-inhibitor from squash seeds in aqueous-solution by nuclear magnetic-resonance and a combination of distance geometry and dynamical simulated annealing. J. Mol. Biol. 210, 635– 648 ( 1989).

    Article  CAS  Google Scholar 

  34. Doyle, D. A. et al. Crystal structures of a complexed and peptide-free membrane protein-binding domain: molecular basis of peptide recognition by PDZ. Cell 85, 1067– 1076 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Engh for stimulating discussions, F. Hesse for protein purification, H. Burtscher for cloning and expression, H. Popp for fermentation, M. Wozny for mass analysis and R. Rudolf for analytical ultracentrifugation. M. Z. is a recipient of the graduate scholarship from Verband der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tad A. Holak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mühlhahn, P., Zweckstetter, M., Georgescu, J. et al. Structure of interleukin 16 resembles a PDZ domain with an occluded peptide binding site. Nat Struct Mol Biol 5, 682–686 (1998). https://doi.org/10.1038/1376

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/1376

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing