Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Characterization of non-inducible Tet repressor mutants suggests conformational changes necessary for induction

Abstract

Non-inducible tetracycline repressor (TetR) mutants were grouped in three structurally distinct classes. We quantitated in vivo operator binding, inducibility, and in vitro tetracycline binding of mutants from each class. Mutation of residues close to tetracycline (class 1) leads to reduced affinity for the drug. Mutation of residues located at the connection of the DNA-reading head with the protein core (class 2) and at the dimerization interface (class 3) bind inducer with the same affinity as wild-type TetR. These mutations interfere with the induced, but not the operator-binding conformation of TetR. The affinity of some class 1 mutants for tetracycline is less affected than their inducibility, suggesting that the mutated residues are important for triggering those conformational changes necessary for induction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Parkinson, J.S. Signal transduction schemes of bacteria. Cell 73, 857–871 (1993).

    Article  CAS  Google Scholar 

  2. Parkinson, J.S. & Kofoid, E.C. Communication modules in bacterial signalling proteins. Annu. Rev. Genet. 26, 71–112 (1992).

    Article  CAS  Google Scholar 

  3. Heyduck, T. & Lee, J.C. Application of fluorescence energy transfer and polarization to monitor Escherichia coli cAMP receptor protein and lac promoter interaction. Proc. natn. Acad. Sci. U.S.A. 87, 1744–1748 (1990).

    Article  Google Scholar 

  4. Schultz, S.C., Shields, G.C. & Steitz, T.A. Crystal structure of a CAP-DNA complex: the DNA is bent by 90°. Science 253, 1001–1007 (1991).

    Article  CAS  Google Scholar 

  5. Somers, W.S. & Philips, S.E.V. 1992. Crystal structure of the met repressor-operator complex at 2.8 Å resolution reveals DNA recognition by β-strands. Nature 539, 387–393 (1992).

    Article  Google Scholar 

  6. Arvidson, D.N. Interaction of the Escherichia coli Trp aporepressor with its ligand, L-tryptophan. J. Biol. Chem. 261, 238–243 (1986).

    CAS  PubMed  Google Scholar 

  7. Zhang, H. et al. The solution structure of the trp repressor-operator DNA complex. J. molec. Biol. 238, 592–614 (1994).

    Article  CAS  Google Scholar 

  8. Miller, J.H. & Reznikoff, W.S. The operon, (2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; 1980).

    Google Scholar 

  9. Hillen, W., Gatz, C., Altschmied, L., Schollmeier, K. & Meier, I. Control of expression of the Tn10-encoded tetracyline resistance genes. J. molec. Biol. 169, 707–721 (1983).

    Article  CAS  Google Scholar 

  10. Takahashi, M., Altschmied, L. & Hillen, W. Kinetic and equilibrium characterization of the Tet repressor-tetracyline complex by fluorescence measurements. J. molec. Biol. 187, 341–348 (1986).

    Article  CAS  Google Scholar 

  11. Laiken, S.L., Gross, C.A. & von Hippel, P.H. Equilibrium and kinetic studies of Escherichia coli lac repressor-inducer interactions. J. molec. Biol. 66, 143–155 (1972).

    Article  CAS  Google Scholar 

  12. Lin, S.-Y. & Riggs, A.D. The general affinty of lac repressor for E. coli DNA: implications for gene regulation in procaryotes and eucaryotes. Cell 4, 107–111 (1975).

    Article  CAS  Google Scholar 

  13. Hansen, D., Altschmied, L., & Hillen, W. Tet repressor mutants with single tyrptophan residues as fluorescent probes. J. Biol. Chem. 262, 14030–14035 (1987).

    CAS  PubMed  Google Scholar 

  14. Weber, I.T. & Steitz, T.A. Structure of a complex of catabolite gene activator protein and cyclic AMP refined at 2.5 Å resolution. J. molec. Biol. 198, 311–326 (1987).

    Article  CAS  Google Scholar 

  15. Rafferty, J.B., Somers, W.S., Saint-Girons, J. & Phillips, S.E.V. Three-dimensional crystal structures of Escherichia coli met repressor with and without corepressor. Nature 341, 705–710 (1989).

    Article  CAS  Google Scholar 

  16. Chabbert, M., Hillen, W., Hansen, D., Takahashi, M. & Bousquet, J. Structural analysis of the operator binding domain of Tn10-encoded Tet repressor: a time-resolved fluorescence and anisotropy study. Biochemistry 31, 1951–1960 (1992).

    Article  CAS  Google Scholar 

  17. Zhao, D., Arrowsmith, C.H., Jia, X. & Jardetzky, O. Refined solution structure of the Escherichia coli trp holo-and aporepressor. J. molec. Biol. 229, 735–746 (1993).

    Article  CAS  Google Scholar 

  18. Zhang, R.-G., Joachimiak, A., Lawson, C.L., Schevitz, R.W., Otwinowski, Z. & Sigler, P.B. The crystal structure of trp aporepressor at 1.8 Å shows how binding tryptophan enhances DNA affinity. Nature 327, 591–597 (1987).

    Article  CAS  Google Scholar 

  19. Hinrichs, W., Kisker, C., Düvel, M., Müller, A., Tovar, K., Hillen, W. & Saenger, W. Structure of the Tet repressor-tetracycline complex and regulation of antibiotic resistance. Science 264, 418–420 (1994).

    Article  CAS  Google Scholar 

  20. Kisker, C., Hinrichs, W., Tovar, K., Hillen, W. & Saenger, W. The complex formed between tetracycline repressor and tetracycline-Mg2+ reveals mechanism of antibiotic resistance. J. molec. Biol. 247, 260–280 (1995).

    Article  CAS  Google Scholar 

  21. Wissmann, A., Meier, I. & Hillen, W. Saturation mutagenesis of the Tn10-encoded fef operator O1: identification of base-pairs involved in Tet repressor recognition. J. molec. Biol. 202, 397–406 (1988).

    Article  CAS  Google Scholar 

  22. Heuer, C. & Hillen, W. Tet repressor-tet operator contacts probed by operator DNA-modification interference studies. J. molec. Biol. 202, 407–415 (1988).

    Article  CAS  Google Scholar 

  23. Sizemore, C., Wissmann, A., Gülland, U. & Hillen, W. Quantitative analysis of Tn10 Tet repressor binding to a complete set of tet operator mutants. Nucleic Acids Res. 18, 2875–2880 (1990).

    Article  CAS  Google Scholar 

  24. Tovar, K. & Hillen, W. Tet repressor binding induced curvature of tet operator DNA. Nucleic Acids Res. 17, 6515–6522 (1989).

    Article  CAS  Google Scholar 

  25. Wissmann, A. et al. Amino acids determining operator binding specificity in the helix-turn-helix motif of Tn10 Tet repressor. EMBO J. 10, 4145–4152 (1991).

    Article  CAS  Google Scholar 

  26. Baumeister, R., Helbl, V. & Hillen, W. Contacts between Tet repressor and tet operator revealed by new recognition specificities of single amino acid replacement mutants. J. molec. Biol. 226, 1257–1270 (1992).

    Article  CAS  Google Scholar 

  27. Helbl, V., Berens, C., & Hillen, W. Proximity probing of Tet repressor to tet operator by dimethylsulfate reveals protected and accessible functions for each recognized base-pair in the major groove. J. molec. Biol. 245, 538–548 (1995).

    Article  CAS  Google Scholar 

  28. Smith, L.D. & Bertrand, K.P. Mutations in the Tn10 Tet repressor that interfere with induction; location of the tetracycline-binding domain. J. molec. Biol. 203, 949–959 (1988).

    Article  CAS  Google Scholar 

  29. Hecht, B., Müller, G. & Hillen, W. Non-Inducible Tet Represssor Mutations Map from the Operator Binding Motif to the C-Terminus. J. Bacteriol. 175, 1206–1210 (1993).

    Article  CAS  Google Scholar 

  30. Goldenberg, D.P. Genetic studies of protein stability and mechanisms of folding. A. Rev. Biophys. biophys. Chem. 17, 481–507 (1988).

    Article  CAS  Google Scholar 

  31. Wissmann, A. et al. Selection for Tn10 Tet repressor binding to fet operator in Escherichia coli: isolation of temperature-sensitive mutants and combinatorial mutagenesis in the DNA binding motif. Genetics 128, 225–232 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Markiewicz, P., Kleina, L., Cruz, C., Ehret, S. & Miller, J.H. XIV. Analysis of 4000 altered Escherichia coli lac repressors reveals essential and non-essential residues, as well as ‘Spacers’ which do not require a specific sequence. J. molec. Biol. 240, 421–433 (1994).

    Article  CAS  Google Scholar 

  33. Ramakrishnan, C. & Srinivasan, N. Glycyl residue in proteins and peptides: An analysis. Curr. Sci. 59, 851–861 (1990).

    CAS  Google Scholar 

  34. Richmond, T. & Richards, F. Packing of α-helices: geometrical constraints and contact areas. J. molec. Biol. 119, 537–555 (1978).

    Article  CAS  Google Scholar 

  35. Jobe, A., Riggs, A.D. & Bourgeois, S. lac Repressor-operator interactions: V. characterisation of super- and pseudo-wild-type repressors. J. molec. Biol. 64, 181–199 (1972).

    Article  CAS  Google Scholar 

  36. Kleina, L.G. & Miller, J.H. Genetic studies of the lac repressor. XIII. Extensive amino acid replacements generated by the use of natural and synthetic nonsense suppressors. J. molec. Biol. 121, 2956–318 (1990).

    Google Scholar 

  37. Arvidson, D.N., Pfau, J., Hatt, J.K., Shapiro, M., Pecoraro, F.S. & Youderian, P. Super-repressors with alanine 77 changes. J. Biol. Chem. 268, 4362–4369 (1993).

    CAS  PubMed  Google Scholar 

  38. Hurlburt, B.K. & Yanofsky, C. Enhanced operator binding by trp superrepressors of Escherichia coli. J. Biol. Chem. 265, 7853–7858 (1990).

    CAS  PubMed  Google Scholar 

  39. Degenkolb, J., Takahashi, M., Ellestad, G.A., & Hillen, W. Structural requirements of tetracycline-Tet repressor interaction: determination of equilibrium binding constants for tetracycline analogs with Tet repressor. Antimicrob. Agents Chemother. 35, 1591–1595 (1991).

    Article  CAS  Google Scholar 

  40. Takahashi, M., Degenkolb, J. & Hillen, W. Determination of the equilibrium association constant between Tet repressor and tetracycline at limiting Mg2+ concentrations: a generally applicable method for effector-dependent high affinity complexes. Analyt. Biochem. 199, 197–202 (1991).

    Article  CAS  Google Scholar 

  41. Richardson, J.S. & Richardson, D.C. in Prediction of protein structure and the principles of protein conformation (Ed. G.D. Fasman) (Plenum Press, New York and London; 1989).

  42. Altschmied, L., & Hillen, W. Tet repressor tet operator complex formation induces conformational changes in the tet operator DNA. Nucleic Acids Res. 12, 2171–2180 (1984).

    Article  CAS  Google Scholar 

  43. Lederer, H., Tovar, K., Baer, G., May, R.P., Hillen, W. & Heumann, H. The quaternary structure of Tet repressors bound to the Tn10-encoded tet gene control region determined by neutron solution scattering. EMBO J. 8, 1257–1263 (1989).

    Article  CAS  Google Scholar 

  44. Barford, D. & Johnson, L.N. The allosteric transition of glycogen phosphorylase. Nature 340, 609–616 (1989).

    Article  CAS  Google Scholar 

  45. Altschmied, L., Baumeister, R., Pfleiderer, K. & Hillen, W. A threonine to alanine exchange at position 40 of Tet repressor alteres the recognition of the sixth base pair of fef operator from GC to AT. EMBO J. 7, 4011–4017 (1988).

    Article  CAS  Google Scholar 

  46. Ettner, N., Metzger, J.W., Lederer, T., Hulmes, J.D., Kisker, C., Hinrichs, W., Ellestad, G.A. & Hillen, W. Proximity mapping of the Tet repressor-tetracycline-Fe2+ complex by hydrogen peroxide mediated protein cleavage. Biochemistry 34, 22–31 (1995).

    Article  CAS  Google Scholar 

  47. Brent, R. & Ptashne, M. Mechanism of action of the lexA gene product. Proc. natn. Acad. Sci. U.S.A. 78, 4204–4208 (1981).

    Article  CAS  Google Scholar 

  48. Berens, C., Altschmied, L. & Hillen, W. The role of the N-terminus in Tet repressor for tet operator binding determined by a mutational analysis. J. Biol. Chem. 267, 1945–1952 (1992).

    CAS  PubMed  Google Scholar 

  49. Ausubel, F.M. et al. Current protocols in molecular biology. Greene Publishing Associates, (J. Wiley and Sons, New York' 1989).

    Google Scholar 

  50. Hansen, D. & Hillen, W. Tryptophan in α-helix 3 of Tet repressor forms a sequence-specific contact with tef operator in solution. J. Biol. Chem. 262, 12269–12274 (1987).

    CAS  PubMed  Google Scholar 

  51. Bradford, M.M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 1903–1906 (1976).

    Article  Google Scholar 

  52. Perrin, D.D. & Dempsey, B. Buffers for pH and metal ion control. (Chapman and Hill Ltd., London; 1974).

    Google Scholar 

  53. Hillen, W. & Berens, C. Mechanisms underlying expression of Tn10 encoded tetracycline resistance. A. Rev. Microbiol. 48, 345–369 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, G., Hecht, B., Helbl, V. et al. Characterization of non-inducible Tet repressor mutants suggests conformational changes necessary for induction. Nat Struct Mol Biol 2, 693–703 (1995). https://doi.org/10.1038/nsb0895-693

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0895-693

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing