Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Revealing the structure of the oxygen-evolving core dimer of photosystem II by cryoelectron crystallography

Abstract

Here we present cryoelectron crystallographic analysis of an isolated dimeric oxygen-evolving complex of photosystem II (at a resolution of ~0.9 nm), revealing that the D1–D2 reaction center (RC) proteins are centrally located between the chlorophyll-binding proteins, CP43 and CP47. This conclusion supports the hypothesis that photosystems I and II have similar structural features and share a common evolutionary origin. Additional density connecting the two halves of the dimer, which was not observed in a recently described CP47–RC complex that did not include CP43, may be attributed to the small subunits that are involved in regulating secondary electron transfer, such as PsbH. These subunits are possibly also required for stabilization of the dimeric photosystem II complex. This complex, containing at least 29 transmembrane helices in its asymmetric unit, represents one of the largest membrane protein complexes studied at this resolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of the topologies of the PSI PsaA and PsaB proteins with those of CP47–D2 and CP43–D1 of PSII.
Figure 2: SDS-PAGE analysis of the subunit composition of PSII complexes before and after crystallization.
Figure 3: Diffraction pattern and projection maps.
Figure 4: Projection map of PSII core and localization of the D1 and D2 reaction center proteins, CP47 and CP43 and other component subunits within the PSII core.

Similar content being viewed by others

References

  1. Diner, B.A. & Babcock, G.T. In Oxygenic photosynthesis: the light reactions. (eds Ort, D.R. & Yocum, C.F.) 213–247 (Kluwer, Dordrecht, The Netherlands; 1996).

    Google Scholar 

  2. Michel, H. & Deisenhofer, J. Biochemistry 27, 1–7 (1988).

    Article  CAS  Google Scholar 

  3. Rhee, K.-H., Morris, E.P., Barber, J. & Kühlbrandt, W. Nature 396, 283–286 (1998).

    Article  CAS  Google Scholar 

  4. Bricker, T.M. Photosynth. Res. 24, 1–13 (1990).

    Article  CAS  Google Scholar 

  5. Krauss, N. et al. Nature Struct. Biol. 3, 965–973 (1996).

    Article  CAS  Google Scholar 

  6. Schubert, W.-D. et al. J. Mol. Biol. 272, 741–769 (1997).

    Article  CAS  Google Scholar 

  7. Fromme, P. et al. Biochim. Biophys. Acta 1275, 76–83 (1996).

    Article  Google Scholar 

  8. Schubert, W.-D. et al. J. Mol. Biol. 280, 297–314 (1998).

    Article  CAS  Google Scholar 

  9. Barber, J., Nield, J., Morris, E.P. Zheleva, D. & Hankamer, B. Physiol. Plant. 100, 817–827 (1997).

    Article  CAS  Google Scholar 

  10. Hankamer, B. et al. Eur. J. Biochem. 243, 422–429 (1997).

    Article  CAS  Google Scholar 

  11. Cattucci, L. et al. In Photosynthesis: Mechanisms and Effects, vol. II (ed. Garab, G.) 973–976 (Kluwer, Dordrecht, The Netherlands; 1998).

    Book  Google Scholar 

  12. Morris, E.P. Hankamer, B., Zheleva, D., Friso, G. & Barber, J. Structure 5, 837–849 (1997).

    Article  CAS  Google Scholar 

  13. Marr, K.M., Mastronarde, D.N. & Lyon, M.K. J. Cell Biol. 132, 823–833 (1996).

    Article  CAS  Google Scholar 

  14. Rhee, K.-H. et al. Nature 389, 522–526 (1997).

    Article  CAS  Google Scholar 

  15. Boekema, E.J., Nield, J., Hankamer, B. & Barber, J. Eur J. Biochem. 252, 268–276 (1998).

    Article  CAS  Google Scholar 

  16. Packham, N.K. FEBS Lett. 231, 284–290 (1988).

    Article  CAS  Google Scholar 

  17. Mayes, S.R. et al. Biochemistry 32, 11454–1465 (1993).

    Article  Google Scholar 

  18. Henderson, R. et al. J. Mol. Biol. 213, 899–929 (1990).

    Article  CAS  Google Scholar 

  19. van Heel, M., Harauz, G., Orlova, E.V., Schmidt, R. & Schatz, M. J. Struct. Biol. 116, 17–24 (1996).

    Article  CAS  Google Scholar 

  20. Henderson, R. et al. Ultramicroscopy 19, 147–178 (1986).

    Article  CAS  Google Scholar 

  21. Laemmli, U.K. Nature 277, 680–685 (1970).

    Article  Google Scholar 

  22. Moskalenko, A.A., Barbato, R. & Giacometti, G.M. FEBS Lett. 314, 271–274 (1992).

    Article  CAS  Google Scholar 

  23. Barbato, R., Friso, G., Rigoni, F., Vecchia, F.D. & Giacometti, G.M. J. Cell Biol. 119, 325–335 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the BBSRC for financial support, B. Gowen, S. Chen and H. Saibil for help with electron microscopy and sample preparation, M. van Heel for the use of a densitometer and computing facilities and J. Nield for preparing Fig. 1. We also thank W. Kühlbrandt and P. Fromme for valuable discussions on this work.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hankamer, B., Morris, E. & Barber, J. Revealing the structure of the oxygen-evolving core dimer of photosystem II by cryoelectron crystallography. Nat Struct Mol Biol 6, 560–564 (1999). https://doi.org/10.1038/9341

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/9341

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing