Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Switching affinities in nuclear trafficking

Abstract

A new structure of full length importin α, a key protein in the nuclear transport process, lends support to a model of autoinhibition mediated by importin α residues that mimic a nuclear localization sequence. This model explains the change in importin α affinity for nuclear localization sequences that occurs in transporting cargo from the cytoplasm to the nucleus.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration of the molecular components of the nuclear protein import machinery.
Figure 3: Cα trace of mouse importin α showing the IBB domain in CPK representation8.
Figure 2: Structure of the Arm (armadillo) and HEAT repeats from which importins α and β are constructed.
Figure 4: Stereo views of the interaction between a, SV40 NLS and yeast importin α4 (PDB code 1bk6) and between b, mouse importin α and its IBB domain8 (PDB code 1ia1).

References

  1. Görlich, D. EMBO J. 17, 2721–2727 ( 1998).

    Article  Google Scholar 

  2. Ohno, M., Fornerod, M. & Mattaj, I.W. Cell 92, 327– 336 (1998).

    Article  CAS  Google Scholar 

  3. Scheffzek, K. et al. Nature 374, 378–381 (1995).

    Article  CAS  Google Scholar 

  4. Conti, E. et al. Cell 94, 193–204 (1998).

    Article  CAS  Google Scholar 

  5. Bullock, T.L. et al. J. Mol. Biol. 260, 422– 431 (1996).

    Article  CAS  Google Scholar 

  6. Stewart, M., Kent, H.M. & McCoy, A.J. J. Mol. Biol. 277, 635– 648 (1998).

    Article  CAS  Google Scholar 

  7. Vetter, I.R., Nowak, C., Nishimoto, T., Kuhlmann, J. & Wittinghofer, A. Nature 398, 39– 46 (1999).

    Article  CAS  Google Scholar 

  8. Kobe, B. Nat. Struct. Biol. 6, 388–397 (1999).

    Article  CAS  Google Scholar 

  9. Dingwall, C. & Laskey, R.A. Trends Biochem. Sci. 16, 178–181 (1991).

    Article  Google Scholar 

  10. Görlich, D. et al. EMBO J. 15, 1810–1817 (1996).

    Article  Google Scholar 

  11. Görlich, D. et al. EMBO J. 15, 5584–5594 (1996).

    Article  Google Scholar 

  12. Kutay, U. et al. Cell 90, 1061–1071 (1997).

    Article  CAS  Google Scholar 

  13. Loundsbury, K.M. & Macara, I.G. J. Biol. Chem. 272, 551–555 ( 1997).

    Article  Google Scholar 

  14. Bischoff, F.R. & Görlich, D. FEBS Lett . 419, 249–254 ( 1997).

    Article  CAS  Google Scholar 

  15. Smith, A., Brownawell, A. & Macara, I.G. Curr. Biol. 8, 1403– 1406 (1998).

    Article  CAS  Google Scholar 

  16. Ribbeck, K. et al. EMBO J. 17, 6587–6598 .

  17. Kose, S. et al. J. Cell Biol. 139, 841– 849.

  18. Ribbeck, K. et al. Curr. Biol. 9, 47– 50 (1999).

    Article  CAS  Google Scholar 

  19. Stewart, M. Sem. Cell Biol. 3, 267–277 (1992).

    Article  CAS  Google Scholar 

  20. Koepp, D. & Silver, P.M. Cell 87, 1–4 (1996).

    Article  CAS  Google Scholar 

  21. Melchior, F., Weber, K. & Gerke, V. Mol. Cell. Biol. 4, 569– 581 (1993).

    Article  CAS  Google Scholar 

  22. Ohtsubo, M., Okazaki, H. & Nishimoto, T. J. Cell Biol. 109, 1389– 1397 (1989).

    Article  CAS  Google Scholar 

  23. Huber, A.H., Nelson, W.J. & Weis, W.I. Cell 90, 871– 882 (1997).

    Article  CAS  Google Scholar 

  24. Huxford, T. et al. Cell 95, 759–770 (1998).

    Article  CAS  Google Scholar 

  25. Jacobs, M.D. & Harrison, S.C. Cell 95, 749–758 (1998).

    Article  CAS  Google Scholar 

  26. Görlich, D. et al Curr, Biol. 5, 383– 392 (1995).

    Article  Google Scholar 

  27. Percipalle, P. et al. J. Mol. Biol. 266, 722– 732 (1997).

    Article  CAS  Google Scholar 

  28. Groves, M.R. et al. Cell 95, 99–110 (1999).

    Article  Google Scholar 

  29. Andrade, M.A. & Bork, P. Nature Genet. 11, 115–116 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Murray Stewart or Daniela Rhodes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stewart, M., Rhodes, D. Switching affinities in nuclear trafficking. Nat Struct Mol Biol 6, 301–304 (1999). https://doi.org/10.1038/7529

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/7529

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing