Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The X-ray structures of two mutant crystallin domains shed light on the evolution of multi-domain proteins

Abstract

We use protein engineering and crystallography to simulate aspects of the early evolution of βγ-crystallins by observing how a single domain oligomerizes in response to changes in a sequence extension. The crystal structure of the C-terminal domain of γβ-crystallin with its four-residue C-terminal extension shows that the domain does not form a symmetric homodimer analogous to the two-domain pairing in γ-crystallins. Instead the C-terminal extension now forms heterologous interactions with other domains leading to the solvent exposure of the natural hydrophobic interface with a consequent loss in protein solubility. However, this domain truncated by just the C-terminal tyrosine forms a symmetric homodimer of domains in the crystal lattice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dobson, C.M. Finding the right fold. Nature Struct. Biol. 2, 513–517 (1995).

    Article  CAS  Google Scholar 

  2. Wistow, G.J. & Piatigorsky, J. Lens crystallins: The evolution and expression of proteins for a highly specialized tissue. Annu. Rev. Biochem. 57, 479–504 (1988).

    Article  CAS  Google Scholar 

  3. Blundell, T. et al. The molecular structure and stability of the eye lens: X-ray analysis of γ-crystallin II. Nature 289, 771–777 (1981).

    Article  CAS  Google Scholar 

  4. Bloemendal, H. & de Jong, W. W. Lens proteins and their genes. Prog. Nucleic Add Res. Mol. Biol. 41, 259–281 (1991).

    Article  CAS  Google Scholar 

  5. Bax, B. et al. X-ray analysis of βB2-crystallin and evolution of oligomeric lens proteins. Nature 347, 776–780 (1990).

    Article  CAS  Google Scholar 

  6. Lubsen, N.H., Aarts, H.J.M. & Schoenmakers, J.G.G. The evolution of lenticular proteins: the β- and γ-crystallin super gene family. Prog. Biophys. Molec. Biol. 51, 47–76 (1988).

    Article  CAS  Google Scholar 

  7. Wistow, G. Evolution of a protein superfamily: relationships between vertebrate lens crystallins and microorganism dormancy proteins. J. Mol. Evol. 30, 140–145 (1990).

    Article  CAS  Google Scholar 

  8. Bennett, M.J., Choe, S. & Eisenberg, D. Domain swapping: entangling alliances between proteins. Proc Natl. Acad. Sci. USA 91, 3127–3131 (1994).

    Article  CAS  Google Scholar 

  9. Slingsby, C., Bateman, O.A. & Simpson, A. Motifs involved in protein-protein interactions. Mol. Biol. Rep. 17, 185–195 (1993).

    Article  CAS  Google Scholar 

  10. Wang, J. et al. Structural basis of asymmetry in the human immunodeficiency virus type 1 reverse transcriptase heterodimer. Proc. Natl. Acad. Sci. USA 91, 7242–7246 (1994).

    Article  CAS  Google Scholar 

  11. Fletterick, R.J. & Bazan, J.F. When one and one are not two. Nature Struct. Biol. 2, 721–723 (1995).

    Article  CAS  Google Scholar 

  12. Bennett, M.J., Schlunegger, M.P. & Eisenberg, D. 3D Domain swapping—a mechanism for oligomer assembly. Protein Sci. 4, 2455–2468 (1995).

    Article  CAS  Google Scholar 

  13. Mayr, E-M., Jaenicke, R. & Glockshuber, R. Domain interactions and connecting peptides in lens crystallins. J. Mol. Biol. 235, 84–88 (1994).

    Article  CAS  Google Scholar 

  14. Rudolph, R., Siebendritt, R., Nesslauer, G., Sharma, A.K. & Jaenicke, R. Folding of an all-β protein: independent domain folding in γ||-crystallin from calf lens. Proc. Natl. Acad. Sci. USA 87, 4625–4629 (1990).

    Article  CAS  Google Scholar 

  15. Magalhaes, A., Maigret, B., Hoflack, J., Gomes, J.N.F. & Scheraga, H.A. Contribution of unusual arginine-arginine short-range interactions to stabilization and recognition in proteins. J. Protein Chem. 13, 195–215 (1994).

    Article  CAS  Google Scholar 

  16. De Jong, W.W., Lubsen, N.H. & Kraft, H.J. Molecular evolution of the eye lens. Prog. Ret. Eye Res. 13, 391–442 (1994).

    Article  CAS  Google Scholar 

  17. Cooper, P.G., Carver, J.A., Aquilina, J.A., Ralston, G.B. &Truscott, R.J.W. A1 NMR spectroscopic comparison of γS and γB-crystallins. Exp. Eye Res. 59, 211–220 (1994).

    Article  CAS  Google Scholar 

  18. Najmudin, S. et al. Structure of the bovine eye lens protein γB(gll)-crystallin at 1.47 Å. Acta Crystallogr. D49, 223–233 (1993).

    CAS  Google Scholar 

  19. Carver, J.A., Aquilina, J.A., Cooper, P.G., Williams, G.A. &Truscott, R.J.W. α-Crystallin: molecular chaperone and protein surfactant. Biochim. Biophys. Acta 1204, 195–206 (1994).

    Article  CAS  Google Scholar 

  20. Otwinowski, Z. in Data Collection and Processing, Proceedings of the CCP4 Study Weekend, 29–30 January 1993 (ed. Sawyer, L, Isaacs, N. & Bailey, S) 56–62 (SERC, Daresbury Laboratory, UK, 1993).

    Google Scholar 

  21. Leslie, A.G.W., Brick, P. & Wonacott, A.T. Daresbury Laboratory information Quarterly for Protein Crystallography 18, 33–39 (S. E.R.C. Daresbury Laboratory, Warrington, U.K., 1986)

  22. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  23. Messerschmidt, A. & Pflugrath, J.W. Crystal orientation and X-ray pattern prediction routines for area-detector diffractometer systems in macromolecular crystallography. J. Appl. Crystallogr. 20, 306–315 (1987).

    Article  CAS  Google Scholar 

  24. Fox, G.C. & Holmes, K.C. An alternative method of solving the larger scaling equations of Hamilton, Rollett and Sparks. Acta Crystallogr. 20, 886–891 (1966).

    Article  CAS  Google Scholar 

  25. French, G.S. & Wilson, K.S. On the treatment of negative intensity observations. Acta Crystallogr. A34, 517–525 (1978).

    Article  CAS  Google Scholar 

  26. Matthews, B.W. Solvent content of protein crystals. J. Mol. Biol. 33, 491–497 (1968).

    Article  CAS  Google Scholar 

  27. Navaza, J. AMoRe: an Automated Package for Molecular Replacement. Acta Crystallogr. A50, 157–163 (1994).

    Article  CAS  Google Scholar 

  28. Crowther, R.A. in The Molecular Replacement Method (ed. Rossmann, M.G.) 173–178 (Gordon and Breach, New York, 1972)

    Google Scholar 

  29. Driessen, H.P.C. et al. Structure of oligomeric βB2 crystallin: an application of the T2 translation function to an asymmetric unit containing two dimers. Acta Crystallogr. B47, 987–997 (1991).

    Article  CAS  Google Scholar 

  30. Wang, D., Driessen, H.P.C. & Tickle, I.J. MOLPACK: Molecular graphics for studying the packing of protein molecules in the crystallographic unit cell. J. Mol. Graph. 9, 28, 50–52 (1991).

    Article  CAS  Google Scholar 

  31. Brünger, A.T., Kuryan, J. & Karplus, M. Crystallographic R-factor refinement by molecular-dynamics. Science 235, 458–460 (1987).

    Article  Google Scholar 

  32. Jones, T.A. FRODO: a graphics model-building and refinement system for macromolecules. J. Appl. Crystallogr. 11, 268–272 (1978).

    Article  CAS  Google Scholar 

  33. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK-A program to check the stereochemical quality of protein structures J.Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  34. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for the building of protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47 110–119 (1991).

    Article  CAS  Google Scholar 

  35. Lee, B. & Richards, F.M. The interpretation of protein structures: estimation of static accessibility. J. Mol. Biol. 55, 379–400 (1971).

    Article  CAS  Google Scholar 

  36. Bailey, S. The CCP4 suite—programs for protein crystallography. Acta Crystallogr. D50 760–763 (1994).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norledge, B., Mayr, EM., Glockshuber, R. et al. The X-ray structures of two mutant crystallin domains shed light on the evolution of multi-domain proteins. Nat Struct Mol Biol 3, 267–274 (1996). https://doi.org/10.1038/nsb0396-267

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0396-267

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing