Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Folding intermediates of SNARE complex assembly

Abstract

SNARE (soluble NSF attachment protein receptor) proteins assemble into a stable complex essential for vesicle–membrane fusion. To further understand SNARE function we have used solution nuclear magnetic resonance (NMR) spectroscopy to characterize three assembly states of a yeast SNARE complex: first, the 'closed' conformation of Sso1; second, the binary complex of Sso1 and Sec9; and third, the ternary complex of Sso1, Sec9 and Snc1. Sec9 and Snc1 are unstructured in isolation. Sso1 likely consists of a four helix bundle formed by part of the C–terminal Hcore domain and the N–terminal HAHBHC domain, and this bundle is flanked on both sides by large flexible regions. Sso1 switches to an 'open' state when its Hcore domain binds Sec9. Conformational switching of the Hcore domain, via HAHBHC, may provide a key regulatory mechanism in SNARE assembly. Formation of binary and ternary complexes induces additional α–helical structure in previously unstructured regions. Our data suggest a directed assembly process beginning distal to the membrane surfaces and proceeding toward them, bringing membranes into close proximity and possibly leading to membrane fusion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural characterization of the cytoplasmic domains of uncomplexed Sso1 and Snc1.
Figure 2: Characterization of the HAHBHC:Hcore interaction in the closed conformation of uncomplexed Sso1.
Figure 3: Unstructured regions and binding induced structure formation in the binary complex of Sso1 and Sec9.
Figure 4: Additional induced structure upon formation of the ternary complex of Sso1, Sec9 and Snc1.
Figure 5: a, Summary of the NMR data mapping unstructured or flexible regions in the cytoplasmic domains of uncomplexed Sso1 and Snc1, and when in the binary or ternary complex.

Similar content being viewed by others

References

  1. Ferro–Novick, S. and Jahn, R. Nature 370, 191–193 (1994).

    Article  Google Scholar 

  2. Weimbs, T. et al. Proc. Nat. Acad. Sci. USA 94, 3046– 3051 (1997).

    Article  CAS  Google Scholar 

  3. Terrian, D.M. & White, M.K. Eur. J. Cell. Biol. 73, 198–204 (1997).

    CAS  PubMed  Google Scholar 

  4. Rossi, G., Salminen, A., Rice, L.M., Brunger, A.T. & Brennwald, P. J. Biol. Chem. 272, 16610– 16617 (1997).

    Article  CAS  Google Scholar 

  5. Bennett, M.K. Curr. Opin. Cell. Biol. 7, 581–586 (1995).

    Article  CAS  Google Scholar 

  6. Calakos, N., Bennett, M.K., Peterson, K.E. & Scheller, R.H. Science 263, 1146–1149 ( 1994).

    Article  CAS  Google Scholar 

  7. Lin, R.C. & Scheller, R.H. Neuron 19, 1087–1094 (1997).

    Article  CAS  Google Scholar 

  8. Fasshauer, D., Eliason, W.K., Brunger, A.T. & Jahn, R. Biochemistry 37, 10354–10362 ( 1998).

    Article  CAS  Google Scholar 

  9. Poirier, M.A. et al. J. Biol. Chem. 273, 11370– 11377 (1998).

    Article  CAS  Google Scholar 

  10. Sutton, R.B., Fasshauer, D., Jahn, R. & Brunger, A.T. Nature 395, 347–353 (1998).

    Article  CAS  Google Scholar 

  11. Fernande, I. et al. Cell 94, 841–849 (1998).

    Article  Google Scholar 

  12. Nicholson, K. L. et al. Nature Struct. Biol. 5, 793– 802 (1998).

    Article  CAS  Google Scholar 

  13. Fasshauer, D., Otto, H., Eliason, W.K., Jahn, R. & Brunger, A.T. J. Biol. Chem. 272, 28036– 28041 (1997).

    Article  CAS  Google Scholar 

  14. Fasshauer, D., Bruns, D., Shen, B., Jahn, R. & Brunger, A.T. J. Biol. Chem. 272, 4582– 4590 (1997).

    Article  CAS  Google Scholar 

  15. Rice, L.M., Brennwald, P. & Brunger, A.T. FEBS Lett. 415, 49– 55 (1997).

    Article  CAS  Google Scholar 

  16. Schulman, B.A., Kim, P.S., Dobson, C.M. & Redfield, C. Nature Struct. Biol. 4, 630–634 ( 1997).

    Article  CAS  Google Scholar 

  17. Schwalbe, H. et al. Biochemistry 36, 8977– 91 (1997).

    Article  CAS  Google Scholar 

  18. Wishart, D.S., Bigam, C.G., Holm, A., Hodges, R.S. & Sykes, B.D. J. Biomol. NMR 5, 67– 81 (1995).

    Article  CAS  Google Scholar 

  19. Hanson, P.I., Roth, R., Morisaki, H., Jahn, R. & Heuser, J.E. Cell 90, 523–535 (1997).

    Article  CAS  Google Scholar 

  20. Hanson, P.I., Otto, H., Barton, N. & Jahn, R. J. Biol. Chem. 270, 16955–16961 (1995).

    Article  CAS  Google Scholar 

  21. Aalto, M.K., Ronne, H. & Keranen, S. EMBO J. 12, 4095– 4104 (1993).

    Article  CAS  Google Scholar 

  22. Hata, Y., Slaughter, C.A. & Südhof, T.C. Nature 366, 347– 351 (1993).

    Article  CAS  Google Scholar 

  23. Garcia, E.P., McPherson, P.S., Chilcote, T.J., Takei, K. & De Camilli, P. J. Cell. Biol. 129 , 105–120 (1995).

    Article  CAS  Google Scholar 

  24. Pevsner, J., Hsu, S.C. & Scheller, R.H. Proc. Natl. Acad. Sci. USA 91, 1445–9 (1994).

    Article  CAS  Google Scholar 

  25. Kay, L.E., Keifer, P. & Saarinen, T. J. Am. Chem. Soc. 114, 10663– 10665 (1992).

    Article  CAS  Google Scholar 

  26. Live, D.H., Davis, D.G., Agosta, W.C. & Cowburn, D. J. Am. Chem. Soc. 106, 1939–1943 (1986).

    Article  Google Scholar 

  27. Marion, D. et al. Biochemistry 28, 6150– 6156 (1989).

    Article  CAS  Google Scholar 

  28. Driscoll, P.C., Clore, G.M., Marion, D., Wingfield, P.T. & Gronenborn, A.M. Biochemistry 29, 3542– 3556 (1990).

    Article  CAS  Google Scholar 

  29. Bartels, C., Xia, T.H., Billeter, M., Guntert, P. & Wûthrich, K. J. Biomol. NMR 6, 1– 10 (1995).

    Article  CAS  Google Scholar 

  30. Zhang, O., Kay, L.E., Olivier, J.P. & Forman–Kay, J.D. J. Biomol. NMR 4, 845–858 ( 1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank D. Fasshauer, L. Gonzales, R. Jahn, R.B. Sutton and S. Stallings for stimulating discussions; M. Cocco, K. Gardner and L.E. Kay for help with NMR methodology, K. Zilm for gracious access to Yale's Varian 800 MHz spectrometer, and P. Brennwald for a construct of Snc1. Support by the National Institutes of Health to A.T.B., an HHMI predoctoral fellowship to L.M.R., and a Hitchings Elion Fellowship from the Wellcome Fund to K.M.F. is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel T. Brunger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiebig, K., Rice, L., Pollock, E. et al. Folding intermediates of SNARE complex assembly. Nat Struct Mol Biol 6, 117–123 (1999). https://doi.org/10.1038/5803

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/5803

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing