Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Computational searching and mutagenesis suggest a structure for the pentameric transmembrane domain of phospholamban

Abstract

Structural and environmental constraints greatly simplify the folding problem for membrane proteins. Computational methods can be used in a global search to find a small number of chemically reasonable models within these constraints, such that a modest set of experimental data can distinguish among them. We show that for phospholamban, the global search can be further simplified by reducing the problem to two-body, rather than many-body, interactions. This method of a constrained global search combined with experimental mutagenesis data yields a three-dimensional structure for this pentameric ion channel. The model is a left-handed symmetric homopentamer of α-helices with a well-defined channel, lined solely by hydrophobic residues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kirchberger, M.A., Tada, M. & Katz, A.M. Phospholamban: a regulatory protein of the cardiac sarcoplasmic reticulum. Recent Advances in Studies on Cardiac Structure and Metabolism 5, 103–115 (1975).

    CAS  Google Scholar 

  2. James, P., Inui, M., Tada, M., Chiesi, M. & Carafoli, E. Nature and site of phospholamban regulation of the Ca2+ pump of sarcoplasmic reticulum. Nature 342, 90–92 (1989).

    Article  CAS  Google Scholar 

  3. Simmerman, H.K.B., Lovelace, D.E. & Jones, L.R. Secondary structure of detergent solubilized phospholamban, a phophorylatable, oligomeric protein of cardiac sarcoplasmic reticulum. Biochim. biophys. Acta 997, 322–329 (1989).

    Article  CAS  Google Scholar 

  4. Kovacs, R.J., Nelson, M.T., Simmerman, H.K.B. & Jones, L.R. Phospholamban forms Ca2+-selective channels in lipid bilayers. J. biol. Chem. 263, 18364–18368 (1988).

    CAS  PubMed  Google Scholar 

  5. Arkin, I.T., Moczydlowski, E.G., Aimoto, S., Smith, S.O. & Engelman, D.M. Functional and structural studies of phospholamban as a model ion channel protein. Biophys. J. 64, A207 (1993).

    Google Scholar 

  6. Wallace, B.A. & Ravikumar, K. The gramicidin pore: crystal structure of the caesium complex. Science 241, 182–187 (1988).

    Article  CAS  Google Scholar 

  7. Fox, R.O. & Richards, F.M. A voltage-gated ion channel model inferred from the crystal structure of alamethicin at 1.5 Å resolution. Nature 300, 325–330 (1982).

    Article  CAS  Google Scholar 

  8. Cascio, M. & Wallace, B.A. Conformation of alamethicin in phospholipid vesicles, implications for insertion models. Proteins 4, 89–98 (1988).

    Article  CAS  Google Scholar 

  9. Unwin, N. Nicotinic acetylcholine receptor at 9 Å resolution. J. molec. Biol. 229, 1101–1124 (1993).

    Article  CAS  Google Scholar 

  10. Treutlein, H.R., Lemmon, M.A., Engelman, D.M. & Brünger, A.T. The glycophorin A transmembrane domain dimer: Sequence-specific propensity for a right-handed supercoil of helices. Biochemistry 31, 12726–12733 (1992).

    Article  CAS  Google Scholar 

  11. Lemmon, M.A., Treutlein, H.R., Adams, P.D., Brünger, A.T. & Engelman, D.M. A dimerization motif for transmembrane α-helices. Nature struct. Biol. 1, 157–163 (1994).

    Article  CAS  Google Scholar 

  12. Arkin, I.T., Adams, P.D., MacKenzie, K.R., Lemmon, M.A., Brünger, A.T. & Engelman, D.M. Structural organization of the pentameric transmembrane α-helices of phospholamban, a cardiac ion channel. EMBO J. 13, 4757–4764 (1994).

    Article  CAS  Google Scholar 

  13. Lemmon, M.A. & Engelman, D.M. Specificity and promiscuity in membrane helix interactions. Q. Rev. Biophys. 27, 157–218 (1994).

    Article  CAS  Google Scholar 

  14. Lemmon, M.A., Flanagan, J.M., Treutlein, H.R., Zhang, J. & Engelman, D.M. Sequence-specific dimerization of transmembrane α-helices. Biochemistry 31, 12719–12725 (1992).

    Article  CAS  Google Scholar 

  15. Popot, J.L. & Engelman, D.M. Membrane protein folding and oligomerization: the two-stage model. Biochemistry 29, 4031–4037 (1990).

    Article  CAS  Google Scholar 

  16. Novotny, J., Rashin, A.A. & Bruccoleri, R.E. Criteria that discriminate between native proteins and incorrectly folded models. Proteins 4, 19–30 (1988).

    Article  CAS  Google Scholar 

  17. Nilges, M. & Brünger, A.T. Automated modeling of coiled coils: Application to the GCN4 dimerization region. Prot. Engng. 4, 649 (1991).

    Article  CAS  Google Scholar 

  18. DeLano, W. & Brünger, A.T. Helix packing in proteins: prediction and energetic analysis of dimeric, trimeric, and tetrameric GCN4 coiled coil structures. Proteins 20, 105–124 (1994).

    Article  CAS  Google Scholar 

  19. Kerr, I.D., Sankararamakrishnan, R., Smart, O.S. & Sansom, M.S.P. Parallel helix bundles and ion channels: Molecular modeling via simulated annealing and restrained molecular dynamics. Biophys. J. 67, 1501–1515 (1994).

    Article  CAS  Google Scholar 

  20. Menestrina, G., Voges, K.-P., Jung, G. & Boheim, G. Voltage-dependent channel formation by rods of helical polypeptides. J. membrane Biol 93, 111–132 (1986).

    Article  CAS  Google Scholar 

  21. Lear, J.D., Wasserman, Z.R. & DeGrado, W.F. Synthetic amphiphilic peptide models for protein ion channels. Science 240, 1177–1181 (1988).

    Article  CAS  Google Scholar 

  22. Bertrand, D., Galzi, J.L., Devillers-Thiéry, A., Bertrand, S. & Changeux, J.P. Stratification of the channel domain in neurotransmitter receptors. Curr. Opin. Cell Biol. 5, 688–693 (1993).

    Article  CAS  Google Scholar 

  23. Xu, M. & Akabas, M.H. Amino acids lining the channel of the g-aminobutyric acid type A receptor identified by cysteine substitution. J. biol. Chem. 268, 21505–21508 (1993).

    CAS  PubMed  Google Scholar 

  24. Brünger, A.T. X-PLOR Version 3.1 (Yale University, New Haven, CT, 1992).

    Google Scholar 

  25. Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S. & Karplus, M. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J. comp. Chem. 4, 187 (1983).

    Article  CAS  Google Scholar 

  26. Ryckaert, J.P., Ciccotti, G. & Berendsen, H.J.C. Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. comp. Phys. 23, 327–341 (1977).

    Article  CAS  Google Scholar 

  27. Berendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.F., DiNola, A. & Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys 81, 3684–3690 (1984).

    Article  CAS  Google Scholar 

  28. Nicholls, A. & Honig, B. GRASP Manual. (Columbia University, New York, NY, 1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, P., Arkin, I., Engelman, D. et al. Computational searching and mutagenesis suggest a structure for the pentameric transmembrane domain of phospholamban. Nat Struct Mol Biol 2, 154–162 (1995). https://doi.org/10.1038/nsb0295-154

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0295-154

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing