Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structures of a novel, thermostable phytase in partially and fully calcium-loaded states

Abstract

Phytases hydrolyze phytic acid to less phosphorylated myo-inositol derivatives and inorganic phosphate. A thermostable phytase is of great value in applications for improving phosphate and metal ion availability in animal feed, and thereby reducing phosphate pollution to the environment. Here, we report a new folding architecture of a six-bladed propeller for phosphatase activity revealed by the 2.1 Å crystal structures of a novel, thermostable phytase determined in both the partially and fully Ca2+-loaded states. Binding of two calcium ions to high-affinity calcium binding sites results in a dramatic increase in thermostability (by as much as 30°C in melting temperature) by joining loop segments remote in the amino acid sequence. Binding of three additional calcium ions to low-affinity calcium binding sites at the top of the molecule turns on the catalytic activity of the enzyme by converting the highly negatively charged cleft into a favorable environment for the binding of phytate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, Ribbon diagram and b, folding topology of TS-Phy.
Figure 3: High-affinity calcium sites.
Figure 2: Stereo view of Cα trace of TS-Phy structure.
Figure 4: Scatchard plot derived from the duplicate measurements of Ca2+ binding to TS-Phy by a modified equilibrium dialysis method24.
Figure 5: Low-affinity calcium sites.
Figure 6: The dependence of thermostability of TS-Phy on calcium ions as assessed by differential scanning calorimetry.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Reddy, N.R., Pierson, M.D., Sathe, S.K. & Salunkhe, D.K. Phytates in legumes and cereals (CRC Press, Inc., Boca Raton, Florida; 1989).

    Google Scholar 

  2. Common, F.H. Biological availability of phosphorus for pigs. Nature 143, 370–380 (1989).

    Google Scholar 

  3. Ehrlich, K.C., Montalbano, B.G., Mullaney, E.J., Dischinger, H.C. & Ullah, A.H. Identification and cloning of a second phytase gene (phyB) from Aspergillus niger (ficuum) . Biochem. Biophys. Res. Commun. 195, 53–57 (1993).

    Article  CAS  Google Scholar 

  4. Ehrlich, K.C., Montalbano, B.G., Mullaney, E.J., Dischinger, H.C. & Ullah, A.H. An acid phosphatase from Aspergillus ficuumhas homology to Penicillium chrysogenum PhoA. Biochem. Biophys. Res. Commun. 204, 63–68 (1994).

    Article  CAS  Google Scholar 

  5. Jia, Z., Golovan, S., Ye, Q. & Forsberg, C.W. Purification, crystallization and preliminary X-ray analysis of the Escherichia coli phytase. Acta Crystallogr. D 54, 647 –649 (1998).

    Article  CAS  Google Scholar 

  6. Craxton, A., Caffrey, J.J., Burkhart, W., Safrany, S.T. & Shears, S.B. Molecular cloning and expression of a rat hepatic multiple inositol polyphosphate phosphatase. Biochem. J. 328, 75–81 ( 1997).

    Article  CAS  Google Scholar 

  7. Ullah, A.H., Cummins, B.J. & Dischinger, H.C. Cyclohexanedione modification of arginine at the active site of Aspergillus ficuum phytase. Biochem. Biophys. Res. Commun. 178, 45–53 ( 1991).

    Article  CAS  Google Scholar 

  8. Kostrewa, D. et al. Crystal structure of phytase from Aspergillus ficuum at 2.5 Å resolution. Nature Struct. Biol. 4, 185–190 (1997).

    Article  CAS  Google Scholar 

  9. Bone, R., Springer, J.P. & Atack, J.R. Structure of inositol monophosphatase, the putative target of lithium therapy. Proc. Natl. Acad. Sci. USA 89, 10031–10035 (1992).

    Article  CAS  Google Scholar 

  10. York, J.D., Ponder, J.W., Chen, Z., Mathews, F.S. & Majerus, P.W. Crystal structure of inositol polyphosphate 1-phosphatase at 2.3 Å resolution. Biochemistry 33, 13164–13171 (1994).

    Article  CAS  Google Scholar 

  11. Ke, H., Thorpe, C.M., Seaton, B.A., Marcus, F. & Lipscomb, W.N. Molecular structure of fructose-1,6-bisphosphatase at 2.8-Å resolution. Proc. Natl. Acad. Sci. USA 86, 1475–1479 (1989).

    Article  CAS  Google Scholar 

  12. Wodzinski, R.J. & Ullah, A.H. Phytase. Adv. Appl. Microbiol. 42, 263–302 (1996).

    Article  CAS  Google Scholar 

  13. Kim, Y.O., Lee, J.K., Kim, H.K., Yu, J.H. & Oh, T.K. Cloning of the thermostable phytase gene (phy) from Bacillus sp. DS11 and its overexpression in Escherichia coli. FEMS Microbiol. Lett. 162, 185–191 ( 1998).

    Article  CAS  Google Scholar 

  14. Kim, Y.O., Kim, H.K., Bae, K.-S., Yu, J.H. & Oh, T.K. Purification and properties of a thermostable phytase from Bacillus sp. DS11. Enzyme and Microbial Technol. 22, 2–7 (1998).

    Article  CAS  Google Scholar 

  15. Kerovuo, J., Lauraeus, M., Nurminen, P., Kalkkinen, N. & Apajalahti, J. Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis. Appl. Environ. Microbiol. 64, 2079–2085 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Holm, L. & Sanders, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 223, 123–138 (1993).

    Article  Google Scholar 

  17. Varghese, J.N., Laver, W.G. & Colman, P.M. Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 Å resolution. Nature 303 , 35–40 (1983).

    Article  CAS  Google Scholar 

  18. Oubrie, A., Rozeboom, H.J., Kalk, K.H., Duine, J.A. & Dijkstra, B.W. The 1.7 Å crystal structure of the apo form of the soluble quinoprotein glucose dehydrogenase from Acnetobacter calcoaceticus reveals a novel internal conserved sequence repeat. J. Mol. Biol. 289, 319– 333 (1999).

    Article  CAS  Google Scholar 

  19. Renault, L. et al. The 1.7 Å crystal structure of the regulator of chromosome condensation (RCC1) reveals a seven-bladed propeller. Nature 392, 97–101 (1998).

    Article  CAS  Google Scholar 

  20. Williams, P.A. et al. Haem-ligand switching during catalysis in crystals of a nitrogen-cycle enzyme. Nature 389, 406– 412 (1997).

    Article  CAS  Google Scholar 

  21. Wall, M.A. et al. The structure of the G protein heterotrimer Gi α 1β1γ2 . Cell 83, 1047–1058 (1995).

    Article  CAS  Google Scholar 

  22. Lambright, D.G. et al. The 2.0 Å crystal structure of a heterotrimeric G protein . Nature 379, 311–319 (1996).

    Article  CAS  Google Scholar 

  23. Ha, N.-C., Kim, Y.-O., Oh, T.-K. & Oh, B.-H. Preliminary x-ray crystallographic analysis of a novel phytase from a Bacillus amyloliquefaciens strain. Acta Crystallogr. D 55, 691 –693 (1999).

    Article  CAS  Google Scholar 

  24. Ladent, D. Calcium and membrane binding properties of bovine neurocalcin γ expressed in Escherichia coli. J. Biol. Chem. 270, 3179–3185 (1995).

    Google Scholar 

  25. Herzberg, O. & James, M.N. Refined crystal structure of troponin C from turkey skeletal muscle at 2.0 Å resolution. J. Mol .Biol. 203, 761–779 ( 1988).

    Article  CAS  Google Scholar 

  26. Machius, M., Declerck, N., Huber, R. & Wiegand, G. Activation of Bacillus licheniformis α-amylase through a disorder → order transition of the substrate-binding site mediated by a calcium-sodium-calcium metal triad. Structure 6, 281– 292 (1998).

    Article  CAS  Google Scholar 

  27. Querol, E., Perez-Pons, J.A. & Mozo-Villarias, A. Analysis of protein conformational characteristics related to thermostability. Protein Eng. 9, 265–271 (1996).

    Article  CAS  Google Scholar 

  28. Vogt, G., Woell, S. & Argos, P. Protein thermal stability, hydrogen bonds, and ion pairs . J. Mol. Biol. 269, 631– 643 (1997).

    Article  CAS  Google Scholar 

  29. Otwinowski, Z. & Minor, W. Proceeding of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 ( 1997).

    Article  CAS  Google Scholar 

  30. Collaborative Computational Project Number 4. CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 ( 1994).

  31. Jones, T.A. & Kjeldgaard, M. O version 5.9 (Uppsala University, Uppsala, Sweden; 1993).

  32. Brünger, A.T. X-PLOR: a system for X-ray crystallography and NMR. (Yale University Press, New Haven, Connecticut; 1992).

    Google Scholar 

  33. Engelen, A.J., van der Heeft, F.C., Randsdorp, P.H. & Smit, E.L. Simple and rapid determination of phytase activity. J. AOAC Int. 77, 760–764 ( 1994).

    CAS  PubMed  Google Scholar 

  34. Esnouf, R.M. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graph. Model. 15, 132–134 (1997).

    Article  CAS  Google Scholar 

  35. Merritt, E.A. & Murphy, M.E.P. Raster3D version 2.0 — a program for photorealistic molecular graphics. Acta Crystallogr. D 50, 869–873 ( 1994).

    Article  CAS  Google Scholar 

  36. Honig, B. & Nicholls, A. Classical electrostatics in biology and chemistry. Science 268, 1144– 1149 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank N. Sakabe for kind help in Synchrotron X-ray data collection and processing, and we gratefully acknowledge the use of the X-ray Facility at Pohang Light Source (PLS) and of the BL6B beamline at Photon Factory in Japan for the X-ray data, and PLS EXAFS beamline 3C1 for the XAS experiment. We also thank S.-S. Yoo for the AAS analysis. This study was supported by the G7 project from Korean Ministry of Science and Technology, and in part by the Sakabe Project of TARA and by the Brain Korea 21 Program of Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung-Ha Oh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ha, NC., Oh, BC., Shin, S. et al. Crystal structures of a novel, thermostable phytase in partially and fully calcium-loaded states. Nat Struct Mol Biol 7, 147–153 (2000). https://doi.org/10.1038/72421

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/72421

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing