Article | Published:

Structure of acetylcholinesterase complexed with the nootropic alkaloid, (–)-huperzine A

Nature Structural Biologyvolume 4pages5763 (1997) | Download Citation

Subjects

Abstract

(–)-Huperzine A (HupA) is found in an extract from a club moss that has been used for centuries in Chinese folk medicine. Its action has been attributed to its ability to strongly inhibit acetylcholinesterase (AChE). The crystal structure of the complex of AChE with optically pure HupA at 2.5 Å resolution shows an unexpected orientation for the inhibitor with surprisingly few strong direct interactions with protein residues to explain its high affinity. This structure is compared to the native structure of AChE devoid of any inhibitor as determined to the same resolution. An analysis of the affinities of structural analogues of HupA, correlated with their interactions with the protein, shows the importance of individual hydrophobic interactions between HupA and aromatic residues in the active-site gorge of AChE

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Liu, J.-S. et al. The structures of huperzine A and B, two new alkaloids exhibiting marked anticholinesterase activity. Can. J. Chem. 64, 837–839 (1986).

  2. 2

    Wang, Y.E., Yue, D.X. & Tang, X.-C. Anticholinesterase activity of huperzine A. Acta Pharmacol. Sinica 7, 110–113 (1986).

  3. 3

    Kozikowski, A.P., Thiels, E., Tang, X.-C. & Hanin, I. Huperzine A – A possible lead structure in the treatment of Alzheimer's disease. Adv. Med. Chem. 1, 175–205 (1992).

  4. 4

    Tang, X.C., Xiong, Z.Q., Qian, B.C., Zhou, Z.F. & Zhang, C.L. Cognition improvement by oral Huperzine A: a novel acetylcholinesterase inhibitor, in Alzheimer Disease: Therapeutic Strategies (eds E. Giacobini & R. Becker) 113–119 (Birkhäuser, Boston, 1994).

  5. 5

    Dunnett, S.B. & Fibiger, H.C. Role of forebrain cholinergic systems in learning and memory: relevance to the cognitive deficits of aging and Alzheimer's dementia. Prog. Brain Res. 98, 413–420 (1993).

  6. 6

    Becker, R.E. & Giacobini, E. Cholinergic Basis for Alzheimer Therapy (Birkhäuser, Boston, 1991).

  7. 7

    Davis, K.L. & Powchik, P. Tacrine. Lancet 345, 625–630 (1995).

  8. 8

    Giacobini, E. & Becker, R. Alzheimer Disease: Therapeutic Strategies (Birkhäuser, Boston, 1994).

  9. 9

    Laganière, S., Corey, J., Tang, X.-C., Wülfert, E. & Hanin, I. Acute and chronic studies with the anticholinesterase huperzine A: Effect on central nervous system cholinergic parameters. Neuropharmacology 30, 763–768 (1991).

  10. 10

    Xiong, Z.Q. & Tang, X.C. Effect of Huperzine A, a novel acetylcholinesterase inihibitor, on radial maze performance in rats. Pharmacol. Biochem. Behavior 51, 415–419 (1995).

  11. 11

    Zhang, R.W. et al. Drug evaluation of huperzine A in the treatment of senile memory disorders. Acta Pharmacol. Sinica 12, 250–252 (1991).

  12. 12

    Ved, H.S., Koenig, M.L., Dave, J.R. & Doctor, B.P. Huperzine A decreases neuronal cell death caused by glutamate. Neurobiol. Aging, submitted.

  13. 13

    Geib, S.J., Tückmantel, W. & Kozikowski, A.P. Huperzine A - a potent acetylcholinesterase inhibitor of use in the treatment of Alzheimer's disease. Acta Crystallogr. 47, 824–827 (1991).

  14. 14

    Ashani, Y., Grunwald, J., Kronman, C., Velan, B. & Shafferman, A. Role of tyrosine 337 in the binding of huperzine A to the active site of human acetylcholinesterase. Mol. Pharmacol. 45, 555–560 (1994).

  15. 15

    McKinney, M., Miller, J.H., Yamada, F., Tückmantel, W. & Kozikowski, A.P. Potencies and stereoselectvities of enantiomers of huperzine A for inhibition of rat cortical acetylcholinesterase. Eur. J. Pharmacol. 203, 303–305 (1991).

  16. 16

    Saxena, A. et al. Identification of amino acid residues involved in the binding of Huperzine A to cholinesterases. Prot. Sci. 3, 1770–1778 (1994).

  17. 17

    Pang, Y.-P. & Kozikowski, A. Prediction of the binding sites of huperzine A in acetylcholinesterase by docking studies. J. Computer-Aided Mol. Design 8, 669–681 (1994).

  18. 18

    Sussman, J.L. et al. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science 253, 872–879 (1991).

  19. 19

    Harel, M. et al. Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase. Proc. Natl. Acad. Sci. USA 90, 9031–9035 (1993).

  20. 20

    Axelsen, P.H., Harel, M., Silman, I. & Sussman, J.L. Structure and dynamics of the active site gorge of acetylcholinesterase: synergistic use of molecular dynamics simulation and X-ray crystallography. Prot. Sci. 3, 188–197 (1994).

  21. 21

    Harel, M., Quinn, D.M., Nair, H.K., Silman, I. & Sussman, J.L. The X-ray structure of a transition state analog complex reveals the molecular origins of the catalytic power and substrate specificity of acetylcholinesterase. J. Am. Chem. Soc. 118, 2340–2346 (1996).

  22. 22

    Wlodek, S.T. et al. in Enzymes of the cholinesterase family (eds. Balasubramanian, A.L., Doctor, B.P., Taylor, P. & Quinn, D.M.) 97–104 (Plenum Press, New York, 1995).

  23. 23

    Dougherty, D.A. Cation-π interactions in chemistry and biology: a new view of benzene, Phe, Tyr and Trp. Science 271, 163–168 (1996).

  24. 24

    Kozikowski, A.P. et al. Synthesis of huperzine A and its analogues and their anticholinesterase activity. J. Org. Chem. 56, 4636–4645 (1991).

  25. 25

    Verdonk, M.L., Boks, G.J., Kooijman, H., Kanters, J.A. & Kroon, J. Stereochemistry of charged nitrogen-aromatic interactions and its involvement in ligand-receptor binding. J. Computer-Aided Mol. Design 7, 173–182 (1993).

  26. 26

    Sussman, J.L., Seeman, N.C., Kim, S.-H. & Berman, H.M. The crystal structure of a naturally occurring dinucleotide phosphate uridylyl 3′,5′-adenosine phosphate. models for RNA chain folding. J. Mol. Biol. 66, 403–421 (1972).

  27. 27

    Taylor, R. & Kennard, O. Crystallographic evidence for the existence of C-H…O, C-H….N, and C-H…Cl hydrogen bonds. J. Am. Chem. Soc. 104, 5063–5070 (1982).

  28. 28

    Derewenda, Z.S., Derewenda, U. & Kobos, P.M. (His) C-H…O=C< hydrogen bond in the active sites of serine hydrolases. J. Mol. Biol. 241, 83–93 (1994).

  29. 29

    Kozikowski, A.P. et al. Identification of a more potent analogue of the naturally occurring alkaloid Huperzine A; predictive molecular modeling of its interaction with AChE. J. Am. Chem. Soc. 118, 11357–11362 (1996).

  30. 30

    Harel, M., Kleywegt, G.J., Ravelli, R.B.G., Silman, I. & Sussman, J.L. Crystal structure of an acetylcholinesterase-fasciculin complex: interaction of a three-fingered toxin from snake venom with its target. Structure 3, 1355–1366 (1995).

  31. 31

    Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991).

  32. 32

    Ashani, Y., Peggins III, J.O. & Doctor, B.P. Mechanism of inhibition of cholinesterases by huperzine A. Biochem. Biophys. Res. Comm. 184, 719–726 (1992).

  33. 33

    Sussman, J.L. et al. Purification and crystallization of a dimeric form of acetylcholinesterase from Torpedo californica subsequent to solubilization with phosphatidylinositol-specific phospholipase C. J. Mol. Biol. 203, 821–823 (1988).

  34. 34

    McPherson, A. The growth and preliminary investigation of protein and nucleic acid crystals for X-ray diffraction analysis. Meth. Biochem. Anal. 23, 249–345 (1976).

  35. 35

    Otwinowski, Z. Oscillation data reduction program, in Data Collection and Processing, Proceedings of the CCP4 Study Weekend 29–30 January 1993 (eds L. Sawyer, N. Isaacs & S. Bailey) 56–62 (SERC, Daresbury, 1993).

  36. 36

    Brünger, A.T., Kuriyan, J. & Karplus, M. Crystallographic R factor refinement by molecular dynamics. Science 235, 458–460 (1987).

  37. 37

    Engh, R.H. & Huber, R. Accurate bond and angle parameters for X-ray protein structure refinement. J. Appl. Crystallogr. A47, 392–400 (1991).

  38. 38

    Laskowski, R.A., MacArthur, M.W., Moss, D. & Thornton, J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

  39. 39

    Vriend, G. WHAT IF: a molecular modelling and drug design program. J. Mol. Graph. 8, 52–56 (1990).

  40. 40

    Kleywegt, G.J. & Jones, T.A. Efficient rebuilding of protein structures. Acta Crystallogr. D52, 829–832 (1996).

  41. 41

    InsightII v. 2.3.0, (Biosym Technologies, San Diego, 1993)

  42. 42

    Wallace, A.C., Laskowski, R.A. & Thornton, J.M. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Engng. 8, 127–134 (1995).

  43. 43

    Kozikowski, A.P., Yamada, F., Tang, X.-C. & Hanin, I. Synthesis and biological evaluation of (+/−)-Z-huperzine A. Tetrahedr. Let. 31, 6159–6162 (1990).

  44. 44

    Kozikowski, A.P. et al. Delineating the pharmacophoric elements of huperzine A: importance of the unsaturated three-carbon bridge to its AChE inhibitory activity. J. Med Chem. 34, 3399–3402 (1991).

  45. 45

    Liu, J.-S. & Huang, M.-F. The alkaloids huperzines C and D and huperzinine from Lycopodiastrum casuarinoides. Phytochemistry 37, 1759–1761 (1994).

Download references

Author information

Affiliations

  1. Department of Structural Biology, Weizmann Institute of Science, Rehovot, 76100, Israel

    • Mia L. Raves
    • , Michal Harel
    •  & Joel L. Sussman
  2. The Mayo Clinic, Jacksonville, Florida, 32224, USA

    • Yuan-Ping Pang
  3. Department of Neurobiology, Weizmann Institute of Science, Rehovot, 76100, Israel

    • Israel Silman
  4. Institute of Cognitive and Computational Sciences, Georgetown University Medical School, Washington, DC, 20007-2197, USA

    • Alan P. Kozikowski
  5. Department of Biology, Brookhaven National Laboratory, Upton, New York, 11973-5000, USA

    • Joel L. Sussman

Authors

  1. Search for Mia L. Raves in:

  2. Search for Michal Harel in:

  3. Search for Yuan-Ping Pang in:

  4. Search for Israel Silman in:

  5. Search for Alan P. Kozikowski in:

  6. Search for Joel L. Sussman in:

About this article

Publication history

Received

Accepted

Issue Date

DOI

https://doi.org/10.1038/nsb0197-57

Further reading