Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of a DNA-dependent RNA polymerase (DNA primase)

Abstract

Primases are essential components of the DNA replication apparatus in every organism. They catalyze the synthesis of oligoribonucleotides on single-stranded DNA, which subsequently serve as primers for the replicative DNA polymerases. In contrast to bacterial primases, the archaeal enzymes are closely related to their eukaryotic counterparts. We have solved the crystal structure of the catalytic primase subunit from the hyperthermophilic archaeon Pyrococcus furiosus at 2.3 Å resolution by multiwavelength anomalous dispersion methods. The structure shows a two-domain arrangement with a novel zinc knuckle motif located in the primase (prim) domain. In this first structure of a complete protein of the archaeal/eukaryotic primase family, the arrangement of the catalytically active residues resembles the active sites of various DNA polymerases that are unrelated in fold.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure based sequence alignment, activity and Cα trace of Pfu-prim.
Figure 2: Structural overview, surface properties and zinc binding region of Pfu-prim.
Figure 3: Active site topology and hypothetical model of Pfu-prim bound to a DNA/RNA hybrid.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Kornberg, A. & Baker, T. DNA replication (W.H. Freeman and Co, New York; 1991).

  2. Kusakabe, T. & Richardson, C.C. J. Biol. Chem. 271, 19563–19570 ( 1996).

    Article  CAS  Google Scholar 

  3. Desogus, G., Onesti, S., Brick, P., Rossi, M. & Pisani, F.M. Nucleic Acids Res. 27, 4444–4450 (1999).

    Article  CAS  Google Scholar 

  4. Tougu, K., Peng, H. & Marians, K.J. J. Biol. Chem. 269, 4675– 4682 (1994).

    CAS  PubMed  Google Scholar 

  5. Kusakabe, T. & Richardson, C.C. J. Biol. Chem. 272, 12446–12453 ( 1997).

    Article  CAS  Google Scholar 

  6. Nasheuer, H.P. & Grosse, F. J. Biol. Chem. 263, 8981–8988 (1988).

    CAS  PubMed  Google Scholar 

  7. Conaway, R.C. & Lehman, I.R. Proc. Natl. Acad. Sci. USA 79, 2523–2527 ( 1982).

    Article  CAS  Google Scholar 

  8. Copeland, W.C. & Wang, T.S. J. Biol. Chem. 268, 26179–26189 (1993).

    CAS  PubMed  Google Scholar 

  9. Santocanale, C., Foiani, M., Lucchini, G. & Plevani, P. J. Biol. Chem. 268, 1343–1348 (1993).

    CAS  PubMed  Google Scholar 

  10. Schneider, A. et al. J. Biol. Chem. 273, 21608– 21615 (1998).

    Article  CAS  Google Scholar 

  11. Ilyina, T.V., Gorbalenya, A.E. & Koonin, E.V. J. Mol. Evol. 34, 351– 357 (1992).

    Article  CAS  Google Scholar 

  12. Aravind, L., Leipe, D. & Koonin, E. Nucleic Acids Res. 26, 4205– 4213 (1998).

    Article  CAS  Google Scholar 

  13. Leipe, D., Aravind, L. & Koonin, E. Nucleic Acids Res. 27, 3389– 3410 (1999).

    Article  CAS  Google Scholar 

  14. Kirk, B.W. & Kuchta, R.D. Biochemistry 38, 7727–7736 (1999).

    Article  CAS  Google Scholar 

  15. Pan, H. & Wigley, D.B. Structure Fold. Des. 8, 231–239 (2000).

    Article  CAS  Google Scholar 

  16. Keck, J., Roche, D., Lynch, A. & Berger, J. Science 287, 2482–2486 (2000).

    Article  CAS  Google Scholar 

  17. Podobnik, M., McInerney, P., O'Donnell, M. & Kuriyan, J. J. Mol. Biol. 300, 353–362 (2000).

    Article  CAS  Google Scholar 

  18. Collaborative Computational Project, Number 4. Acta Crystallogr. D 50, 760–763 (1994).

  19. De Guzman, R.N. et al. Science 279, 384–388 (1998).

    Article  CAS  Google Scholar 

  20. Copeland, W.C. & Tan, X. J Biol Chem 270, 3905–3913 (1995).

    Article  CAS  Google Scholar 

  21. Steitz, T.A., Smerdon, S.J., Jager, J. & Joyce, C.M. Science 266, 2022–2025 ( 1994).

    Article  CAS  Google Scholar 

  22. Jacobo-Molina, A. et al. Proc. Natl. Acad. Sci. USA 90, 6320 –6324 (1993).

    Article  CAS  Google Scholar 

  23. Eom, S.H., Wang, J. & Steitz, T.A. Nature 382, 278– 281 (1996).

    Article  CAS  Google Scholar 

  24. Sawaya, M.R., Prasad, R., Wilson, S.H., Kraut, J. & Pelletier, H. Biochemistry 36, 11205–11215 (1997).

    Article  CAS  Google Scholar 

  25. Doublie, S., Tabor, S., Long, A.M., Richardson, C.C. & Ellenberger, T. Nature 391, 251–258 (1998).

    Article  CAS  Google Scholar 

  26. Braithwaite, D.K. & Ito, J. Nucleic Acids Res. 21, 787–802 ( 1993).

    Article  CAS  Google Scholar 

  27. Budisa, N. et al. Eur. J. Biochem. 230, 788– 796 (1995).

    Article  CAS  Google Scholar 

  28. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 ( 1997).

    Article  CAS  Google Scholar 

  29. Leslie, A.G.W. MOSFLM version 6.0 (Cambridge; 1998).

    Google Scholar 

  30. Terwilliger, T.C. & Berendzen, J. Acta Crystallogr. D 55, 849–861 ( 1999).

    Article  CAS  Google Scholar 

  31. Fortelle, E.D.L. & Bricogne, G. Methods Enzymol. 276, 472–494 ( 1997).

    Article  Google Scholar 

  32. Turk, D. PhD. thesis. Weiterentwicklung eines Programms für Molekülgraphik und Elektronendichte-Manipulation und seine Anwendung auf verschiedene Protein-Strukturaufklärungen. Technische Universität München; 1992.

    Google Scholar 

  33. Adams, P.D., Pannu, N.S., Read, R.J. & Brunger, A.T. Proc. Natl. Acad. Sci. USA 94, 5018–5023 (1997).

    Article  CAS  Google Scholar 

  34. Kraulis, P. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  35. Esnouf, R. J. Mol. Graphics 15, 132–134 (1997).

    Article  CAS  Google Scholar 

  36. Nicholls, A., Bharadwaj, R. & Honig, B. Biophys. J. 64, A166 (1993).

    Google Scholar 

  37. Merrit, E.A. & Bacon, D.J. Methods Enzymol. 277, 505–524 (1997).

    Article  Google Scholar 

  38. Barton, G. Protein Eng. 6, 37–40 ( 1993).

    Article  CAS  Google Scholar 

  39. Singh, K. & Modak, M.J. Trends Biochem. Sci. 23, 277–281 ( 1998).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the assistance of H.-D. Bartunik and G.P. Bourenkov at DESY, Hamburg. We thank J. Richardson and S. Steinbacher for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin A. Augustin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Augustin, M., Huber, R. & Kaiser, J. Crystal structure of a DNA-dependent RNA polymerase (DNA primase). Nat Struct Mol Biol 8, 57–61 (2001). https://doi.org/10.1038/83060

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/83060

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing