Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The potential of organoids in urological cancer research

Key Points

  • The development of in vitro and in vivo modelling systems that accurately reflect the diverse mutational profiles of urological diseases is crucial

  • Patient-derived organoids in 3D culture systems enable the culturing of stem or progenitor cells for urological organs and they also mimic the in vivo microenvironment and stromal interactions of cancer cells

  • Nephron progenitor cells derived from human pluripotent stem cells have been successfully used to form complex multicellular kidney organoids, which have potential in disease modelling and drug screening

  • Organoids can be used to model disease; use of gene editing tools enables the study of the mechanisms of tumorigenesis and restoration of the functional defects caused by genetic lesions

Abstract

Technical advances in the development of organoid systems enable cell lines, primary adult cells, or stem or progenitor cells to develop into diverse, multicellular entities, which can self-renew, self-organize, and differentiate. These 3D organoid cultures have proven to be of value in increasing our understanding of the biology of disease and offer the potential of regenerative and genetic therapies. The successful application of 3D organoids derived from adult tissue into urological cancer research can further our understanding of these diseases and could also provide preclinical cancer models to realize the precision medicine paradigm by therapeutic screening of individual patient samples ex vivo. Kidney organoids derived from induced pluripotent stem cells provide personalized biomarkers, which can be correlated with genetic and clinical information. Organoid models can also improve our comprehension of aspects of particular diseases; for example, in prostate cancer, 3D organoids can aid in the identification of tumour-initiating cells from an epithelial cell lineage. Furthermore, kidney organoid differentiation from human pluripotent stem cells enables gene editing to model disease in kidney tubular epithelial cells. State-of-the-art human organoid cultures have potential as tools in basic and clinical research in renal, bladder, and prostatic diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Different organoid development processes.
Figure 2: Applications of organoid culture in human prostate cancer.

Similar content being viewed by others

References

  1. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2017. CA Cancer J. Clin. 67, 7–30 (2017).

    PubMed  Google Scholar 

  2. Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Cancer Genome Atlas Research Network et al. Comprehensive molecular characterization of papillary renal-cell carcinoma. N. Engl. J. Med. 374, 135–145 (2016).

  4. Davis, C. F. et al. The somatic genomic landscape of chromophobe renal cell carcinoma. Cancer Cell 26, 319–330 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43–49 (2013).

  6. Cancer Genome Atlas Research Network. The molecular taxonomy of primary prostate cancer. Cell 163, 1011–1025 (2015).

  7. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507, 315–322 (2014).

  8. Robinson, D. et al. Integrative clinical genomics of advanced prostate cancer. Cell 161, 1215–1228 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Solit, D. B. et al. BRAF mutation predicts sensitivity to MEK inhibition. Nature 439, 358–362 (2006).

    CAS  PubMed  Google Scholar 

  10. Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005).

    CAS  PubMed  Google Scholar 

  11. Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Garnett, M. J. et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483, 570–575 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cheon, D. J. & Orsulic, S. Mouse models of cancer. Annu. Rev. Pathol. 6, 95–119 (2011).

    CAS  PubMed  Google Scholar 

  14. Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621 (1961).

    CAS  PubMed  Google Scholar 

  15. Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981).

    CAS  PubMed  Google Scholar 

  16. McKay, R. Stem cells in the central nervous system. Science 276, 66–71 (1997).

    CAS  PubMed  Google Scholar 

  17. Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Liu, X. et al. ROCK inhibitor and feeder cells induce the conditional reprogramming of epithelial cells. Am. J. Pathol. 180, 599–607 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Chapman, S., Liu, X., Meyers, C., Schlegel, R. & McBride, A. A. Human keratinocytes are efficiently immortalized by a Rho kinase inhibitor. J. Clin. Invest. 120, 2619–2626 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Harrison, R. G., Greenman, M. J., Mall, F. P. & Jackson, C. M. Observations of the living developing nerve fiber. Anat. Rec. (Hoboken) 1, 116–128 (1907).

    Google Scholar 

  21. Gattazzo, F., Urciuolo, A. & Bonaldo, P. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim. Biophys. Acta 1840, 2506–2519 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Shamir, E. R. & Ewald, A. J. Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nat. Rev. Mol. Cell Biol. 15, 647–664 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Rookmaaker, M. B., Schutgens, F., Verhaar, M. C. & Clevers, H. Development and application of human adult stem or progenitor cell organoids. Nat. Rev. Nephrol. 11, 546–554 (2015).

    CAS  PubMed  Google Scholar 

  24. O'Brien, L. E. et al. Rac1 orientates epithelial apical polarity through effects on basolateral laminin assembly. Nat. Cell Biol. 3, 831–838 (2001).

    CAS  PubMed  Google Scholar 

  25. Bryant, D. M. et al. A molecular network for de novo generation of the apical surface and lumen. Nat. Cell Biol. 12, 1035–1045 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Yagi, S., Matsuda, M. & Kiyokawa, E. Suppression of Rac1 activity at the apical membrane of MDCK cells is essential for cyst structure maintenance. EMBO Rep. 13, 237–243 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Smith, Y. C., Grande, K. K., Rasmussen, S. B. & O'Brien, A. D. Novel three-dimensional organoid model for evaluation of the interaction of uropathogenic Escherichia coli with terminally differentiated human urothelial cells. Infect. Immun. 74, 750–757 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Unsworth, B. R. & Lelkes, P. I. Growing tissues in microgravity. Nat. Med. 4, 901–907 (1998).

    CAS  PubMed  Google Scholar 

  29. Tyson, D. R., Inokuchi, J., Tsunoda, T., Lau, A. & Ornstein, D. K. Culture requirements of prostatic epithelial cell lines for acinar morphogenesis and lumen formation in vitro: role of extracellular calcium. Prostate 67, 1601–1613 (2007).

    CAS  PubMed  Google Scholar 

  30. Lang, S. H. et al. Experimental prostate epithelial morphogenesis in response to stroma and three-dimensional matrigel culture. Cell Growth Differ. 12, 631–640 (2001).

    CAS  PubMed  Google Scholar 

  31. Garraway, L. A. et al. Intermediate basal cells of the prostate: in vitro and in vivo characterization. Prostate 55, 206–218 (2003).

    PubMed  Google Scholar 

  32. Xin, L., Lukacs, R. U., Lawson, D. A., Cheng, D. & Witte, O. N. Self-renewal and multilineage differentiation in vitro from murine prostate stem cells. Stem Cells 25, 2760–2769 (2007).

    CAS  PubMed  Google Scholar 

  33. Rinkevich, Y. et al. In vivo clonal analysis reveals lineage-restricted progenitor characteristics in mammalian kidney development, maintenance, and regeneration. Cell Rep. 7, 1270–1283 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Pinto, D., Gregorieff, A., Begthel, H. & Clevers, H. Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev. 17, 1709–1713 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim, K. A. et al. Mitogenic influence of human R-spondin1 on the intestinal epithelium. Science 309, 1256–1259 (2005).

    CAS  PubMed  Google Scholar 

  36. Howe, J. R. et al. Mutations in the SMAD4/DPC4 gene in juvenile polyposis. Science 280, 1086–1088 (1998).

    CAS  PubMed  Google Scholar 

  37. Howe, J. R. et al. Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis. Nat. Genet. 28, 184–187 (2001).

    CAS  PubMed  Google Scholar 

  38. Haramis, A. P. et al. De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science 303, 1684–1686 (2004).

    CAS  PubMed  Google Scholar 

  39. Konturek, J. W., Bielanski, W., Konturek, S. J., Bogdal, J. & Oleksy, J. Distribution and release of epidermal growth factor in man. Gut 30, 1194–1200 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Dignass, A. U. & Sturm, A. Peptide growth factors in the intestine. Eur. J. Gastroenterol. Hepatol. 13, 763–770 (2001).

    CAS  PubMed  Google Scholar 

  41. Schwank, G. et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13, 653–658 (2013).

    CAS  PubMed  Google Scholar 

  42. Rock, J. R. et al. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc. Natl Acad. Sci. USA 106, 12771–12775 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Sato, T. et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology 141, 1762–1772 (2011).

    CAS  PubMed  Google Scholar 

  44. Boj, S. F. et al. Organoid models of human and mouse ductal pancreatic cancer. Cell 160, 324–338 (2015).

    CAS  PubMed  Google Scholar 

  45. Huch, M. et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 160, 299–312 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Huch, M. et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 494, 247–250 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Barker, N. et al. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 6, 25–36 (2010).

    CAS  PubMed  Google Scholar 

  48. Xia, Y. et al. Directed differentiation of human pluripotent cells to ureteric bud kidney progenitor-like cells. Nat. Cell Biol. 15, 1507–1515 (2013).

    CAS  PubMed  Google Scholar 

  49. Takasato, M. et al. Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat. Cell Biol. 16, 118–126 (2014).

    CAS  PubMed  Google Scholar 

  50. Matulay, J. T. et al. Genetic mutations in patient-derived bladder tumor organoids mimic parental tumor samples [abstract PD38-07]. J. Urol. 195, e926 (2016).

    Google Scholar 

  51. Karthaus, W. R. et al. Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell 159, 163–175 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Drost, J. et al. Organoid culture systems for prostate epithelial and cancer tissue. Nat. Protoc. 11, 347–358 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Gao, D. et al. Organoid cultures derived from patients with advanced prostate cancer. Cell 159, 176–187 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Batchelder, C. A., Martinez, M. L., Duru, N., Meyers, F. J. & Tarantal, A. F. Three dimensional culture of human renal cell carcinoma organoids. PLoS ONE 10, e0136758 (2015).

    PubMed  PubMed Central  Google Scholar 

  55. Lobo, N. C. et al. Efficient generation of patient-matched malignant and normal primary cell cultures from clear cell renal cell carcinoma patients: clinically relevant models for research and personalized medicine. BMC Cancer 16, 485 (2016).

    PubMed  PubMed Central  Google Scholar 

  56. van de Wetering, M. et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161, 933–945 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Sharma, P. & Allison, J. P. The future of immune checkpoint therapy. Science 348, 56–61 (2015).

    CAS  PubMed  Google Scholar 

  58. Rosenberg, J. E. et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 387, 1909–1920 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Motzer, R. J. et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373, 1803–1813 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Antonica, F. et al. Generation of functional thyroid from embryonic stem cells. Nature 491, 66–71 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Koehler, K. R., Mikosz, A. M., Molosh, A. I., Patel, D. & Hashino, E. Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture. Nature 500, 217–221 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Eiraku, M. et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472, 51–56 (2011).

    CAS  PubMed  Google Scholar 

  63. Suga, H. et al. Self-formation of functional adenohypophysis in three-dimensional culture. Nature 480, 57–62 (2011).

    CAS  PubMed  Google Scholar 

  64. Little, M. H. & McMahon, A. P. Mammalian kidney development: principles, progress, and projections. Cold Spring Harb. Perspect. Biol. 4, a008300 (2012).

    PubMed  PubMed Central  Google Scholar 

  65. Ader, M. & Tanaka, E. M. Modeling human development in 3D culture. Curr. Opin. Cell Biol. 31, 23–28 (2014).

    CAS  PubMed  Google Scholar 

  66. Takasato, M. et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526, 564–568 (2015).

    CAS  PubMed  Google Scholar 

  67. Takasato, M. & Little, M. H. The origin of the mammalian kidney: implications for recreating the kidney in vitro. Development 142, 1937–1947 (2015).

    CAS  PubMed  Google Scholar 

  68. Takasato, M., Er, P. X., Chiu, H. S. & Little, M. H. Generation of kidney organoids from human pluripotent stem cells. Nat. Protoc. 11, 1681–1692 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Mugford, J. W., Sipila, P., McMahon, J. A. & McMahon, A. P. Osr1 expression demarcates a multi-potent population of intermediate mesoderm that undergoes progressive restriction to an Osr1-dependent nephron progenitor compartment within the mammalian kidney. Dev. Biol. 324, 88–98 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Calderon-Gierszal, E. L. & Prins, G. S. Directed differentiation of human embryonic stem cells into prostate organoids in vitro and its perturbation by low-dose bisphenol A exposure. PLoS ONE 10, e0133238 (2015).

    PubMed  PubMed Central  Google Scholar 

  71. Simon, J. Ectropia vesicæ; (absence, of the anterior walls of the bladder and pubic abdominal parietes); operation for directing the orifices of the ureters into the rectum; temporary success; subsequent death; autopsy. Lancet 60, 568–570 (1852).

    Google Scholar 

  72. van Hemelrijck, M., Thorstenson, A., Smith, P., Adolfsson, J. & Akre, O. Risk of in-hospital complications after radical cystectomy for urinary bladder carcinoma: population-based follow-up study of 7608 patients. BJU Int. 112, 1113–1120 (2013).

    PubMed  Google Scholar 

  73. Osborn, S. L. et al. Induction of human embryonic and induced pluripotent stem cells into urothelium. Stem Cells Transl Med. 3, 610–619 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kang, M., Kim, H. H. & Han, Y. M. Generation of bladder urothelium from human pluripotent stem cells under chemically defined serum- and feeder-free system. Int. J. Mol. Sci. 15, 7139–7157 (2014).

    PubMed  PubMed Central  Google Scholar 

  75. O'Driscoll, L. et al. Phenotypic and global gene expression profile changes between low passage and high passage MIN-6 cells. J. Endocrinol. 191, 665–676 (2006).

    CAS  PubMed  Google Scholar 

  76. Beltran, H. et al. Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. Cancer Discov. 1, 487–495 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Scher, H. I. et al. Circulating tumor cell biomarker panel as an individual-level surrogate for survival in metastatic castration-resistant prostate cancer. J. Clin. Oncol. 33, 1348–1355 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1 (2013).

    PubMed  PubMed Central  Google Scholar 

  79. Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

    PubMed  Google Scholar 

  80. Shin, K. et al. Hedgehog/Wnt feedback supports regenerative proliferation of epithelial stem cells in bladder. Nature 472, 110–114 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Ohishi, T., Koga, F. & Migita, T. Bladder cancer stem-like cells: their origin and therapeutic perspectives. Int. J. Mol. Sci. 17, 43 (2016).

    Google Scholar 

  82. Li, Z. et al. 3D culture supports long-term expansion of mouse and human nephrogenic progenitors. Cell Stem Cell 19, 516–529 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Pavlovich, C. P. & Schmidt, L. S. Searching for the hereditary causes of renal-cell carcinoma. Nat. Rev. Cancer 4, 381–393 (2004).

    CAS  PubMed  Google Scholar 

  84. Lee, S. H. & Shen, M. M. Cell types of origin for prostate cancer. Curr. Opin. Cell Biol. 37, 35–41 (2015).

    CAS  PubMed  Google Scholar 

  85. Lawson, D. A. et al. Basal epithelial stem cells are efficient targets for prostate cancer initiation. Proc. Natl Acad. Sci. USA 107, 2610–2615 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Stoyanova, T. et al. Prostate cancer originating in basal cells progresses to adenocarcinoma propagated by luminal-like cells. Proc. Natl Acad. Sci. USA 110, 20111–20116 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang, Z. A. et al. Lineage analysis of basal epithelial cells reveals their unexpected plasticity and supports a cell-of-origin model for prostate cancer heterogeneity. Nat. Cell Biol. 15, 274–283 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Choi, N., Zhang, B., Zhang, L., Ittmann, M. & Xin, L. Adult murine prostate basal and luminal cells are self-sustained lineages that can both serve as targets for prostate cancer initiation. Cancer Cell 21, 253–265 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang, X. et al. A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature 461, 495–500 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Chua, C. W. et al. Single luminal epithelial progenitors can generate prostate organoids in culture. Nat. Cell Biol. 16, 951–961 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Agarwal, S. et al. Identification of different classes of luminal progenitor cells within prostate tumors. Cell Rep. 13, 2147–2158 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Liu, X. et al. Low CD38 identifies progenitor-like inflammation-associated luminal cells that can initiate human prostate cancer and predict poor outcome. Cell Rep. 17, 2596–2606 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Park, J. W. et al. Prostate epithelial cell of origin determines cancer differentiation state in an organoid transformation assay. Proc. Natl Acad. Sci. USA 113, 4482–4487 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Sluka, P. & Davis, I. D. Cell mates: paracrine and stromal targets for prostate cancer therapy. Nat. Rev. Urol. 10, 441–451 (2013).

    CAS  PubMed  Google Scholar 

  95. Gaggioli, C. et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat. Cell Biol. 9, 1392–1400 (2007).

    CAS  PubMed  Google Scholar 

  96. Scriven, S. D., Booth, C., Thomas, D. F., Trejdosiewicz, L. K. & Southgate, J. Reconstitution of human urothelium from monolayer cultures. J. Urol. 158, 1147–1152 (1997).

    CAS  PubMed  Google Scholar 

  97. Varley, C. L. & Southgate, J. Organotypic and 3D reconstructed cultures of the human bladder and urinary tract. Methods Mol. Biol. 695, 197–211 (2011).

    CAS  PubMed  Google Scholar 

  98. Wan, X. et al. Prostate cancer cell-stromal cell crosstalk via FGFR1 mediates antitumor activity of dovitinib in bone metastases. Sci. Transl Med. 6, 252ra122 (2014).

    PubMed  PubMed Central  Google Scholar 

  99. Fong, E. L. et al. A 3D in vitro model of patient-derived prostate cancer xenograft for controlled interrogation of in vivo tumor-stromal interactions. Biomaterials 77, 164–172 (2016).

    CAS  PubMed  Google Scholar 

  100. Valta, M. P. et al. FGF-8 is involved in bone metastasis of prostate cancer. Int. J. Cancer 123, 22–31 (2008).

    CAS  PubMed  Google Scholar 

  101. Åkerfelt, M. et al. Automated tracking of tumor-stroma morphology in microtissues identifies functional targets within the tumor microenvironment for therapeutic intervention. Oncotarget 6, 30035–30056 (2015).

    PubMed  PubMed Central  Google Scholar 

  102. Hahn, W. C. et al. Creation of human tumour cells with defined genetic elements. Nature 400, 464–468 (1999).

    CAS  PubMed  Google Scholar 

  103. Johnson, P. J., Coussens, P. M., Danko, A. V. & Shalloway, D. Overexpressed pp60c-src can induce focus formation without complete transformation of NIH 3T3 cells. Mol. Cell. Biol. 5, 1073–1083 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Bonner, T. I. et al. Structure and biological activity of human homologs of the raf/mil oncogene. Mol. Cell. Biol. 5, 1400–1407 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Bello, D., Webber, M. M., Kleinman, H. K., Wartinger, D. D. & Rhim, J. S. Androgen responsive adult human prostatic epithelial cell lines immortalized by human papillomavirus 18. Carcinogenesis 18, 1215–1223 (1997).

    CAS  PubMed  Google Scholar 

  106. Zhu, J., Nguyen, M. T., Nakamura, E., Yang, J. & Mackem, S. Cre-mediated recombination can induce apoptosis in vivo by activating the p53 DNA damage-induced pathway. Genesis 50, 102–111 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Matano, M. et al. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat. Med. 21, 256–262 (2015).

    CAS  PubMed  Google Scholar 

  108. Drost, J. et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature 521, 43–47 (2015).

    CAS  PubMed  Google Scholar 

  109. Freedman, B. S. et al. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat. Commun. 6, 8715 (2015).

    CAS  PubMed  Google Scholar 

  110. Carver, B. S. et al. Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat. Genet. 41, 619–624 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Yui, S. et al. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell. Nat. Med. 18, 618–623 (2012).

    CAS  PubMed  Google Scholar 

  112. Toyohara, T. et al. Cell therapy using human induced pluripotent stem cell-derived renal progenitors ameliorates acute kidney injury in mice. Stem Cells Transl Med. 4, 980–992 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Imberti, B. et al. Renal progenitors derived from human iPSCs engraft and restore function in a mouse model of acute kidney injury. Sci. Rep. 5, 8826 (2015).

    PubMed  PubMed Central  Google Scholar 

  114. Kabadi, A. M., Ousterout, D. G., Hilton, I. B. & Gersbach, C. A. Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector. Nucleic Acids Res. 42, e147 (2014).

    PubMed  PubMed Central  Google Scholar 

  115. Deiss, F. et al. Platform for high-throughput testing of the effect of soluble compounds on 3D cell cultures. Anal. Chem. 85, 8085–8094 (2013).

    CAS  PubMed  Google Scholar 

  116. Hakanson, M., Textor, M. & Charnley, M. Engineered 3D environments to elucidate the effect of environmental parameters on drug response in cancer. Integr. Biol. (Camb.) 3, 31–38 (2011).

    CAS  Google Scholar 

  117. Weigelt, B., Lo, A. T., Park, C. C., Gray, J. W. & Bissell, M. J. HER2 signaling pathway activation and response of breast cancer cells to HER2-targeting agents is dependent strongly on the 3D microenvironment. Breast Cancer Res. Treat. 122, 35–43 (2010).

    CAS  PubMed  Google Scholar 

  118. Cheung, K. J., Gabrielson, E., Werb, Z. & Ewald, A. J. Collective invasion in breast cancer requires a conserved basal epithelial program. Cell 155, 1639–1651 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Calon, A. et al. Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat. Genet. 47, 320–329 (2015).

    CAS  PubMed  Google Scholar 

  120. Wyatt, A. W. et al. Heterogeneity in the inter-tumor transcriptome of high risk prostate cancer. Genome Biol. 15, 426 (2014).

    PubMed  PubMed Central  Google Scholar 

  121. Boutros, P. C. et al. Spatial genomic heterogeneity within localized, multifocal prostate cancer. Nat. Genet. 47, 736–745 (2015).

    CAS  PubMed  Google Scholar 

  122. Kumar, A. et al. Substantial interindividual and limited intraindividual genomic diversity among tumors from men with metastatic prostate cancer. Nat. Med. 22, 369–378 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Dayyani, F., Gallick, G. E., Logothetis, C. J. & Corn, P. G. Novel therapies for metastatic castrate-resistant prostate cancer. J. Natl Cancer Inst. 103, 1665–1675 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Margaret McPartland for providing editorial input. Funding was providing by the National Institutes of Health (5K08CA140946 and NIH Cancer Center Core Grant P30 CA008748, and SPORE in Prostate Cancer (5P50CA092629-15)), US Department of Defense (W81XWH-10-1-0197), the Geoffrey Beene Cancer Center, the STARR Cancer Consortium (I8-A722), a Stand Up To Cancer–Prostate Cancer Foundation Prostate Dream Team Translational Research Grant (SU2CAACR-DT0712), and a Prostate Cancer Foundation Movember Challenge Grant.

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched data for the article, substantially contributed to discussion of the content, wrote and reviewed and/or edited the article before submission.

Corresponding author

Correspondence to Yu Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Gao, D. & Chen, Y. The potential of organoids in urological cancer research. Nat Rev Urol 14, 401–414 (2017). https://doi.org/10.1038/nrurol.2017.65

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2017.65

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer