Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

BCG-unresponsive non-muscle-invasive bladder cancer: recommendations from the IBCG

Key Points

  • Intravesical immunotherapy in the form of BCG is the only effective adjuvant therapy for high-risk NMIBC (non-muscle-invasive bladder cancer) that reduces progression of disease

  • Response to salvage therapies after BCG are highly dependent on pattern of tumour recurrence after BCG, especially with regards to dose, duration, and schedule of BCG administration and timing of tumour recurrence after BCG therapy

  • For a patient to be considered BCG-unresponsive, they must have received ≥1 induction course (6 weeks) and one maintenance course (3 weeks) and either have refractory tumour (no disease-free interval) or have recurrence of high-grade tumour within 6 months of their last BCG exposure

  • In true BCG-unresponsive patients, the only standard therapy is radical cystectomy

  • No salvage medical or intravesical treatments have been shown to have durable efficacy in true BCG-unresponsive patients, although some show efficacy in select subgroups of patients

  • Options presented to patients who have high-grade tumour recurrence after adequate BCG therapy should factor in the risk of invasive and metastatic disease, balanced with the potential benefit of bladder salvage

Abstract

Intravesical immunotherapy with live attenuated BCG remains the standard of care for patients with high-risk and intermediate-risk non-muscle-invasive bladder cancer (NMIBC). Most patients initially respond, but recurrence is frequent and progression to invasive cancer is a concern. No established and effective intravesical therapies are available for patients whose tumours recur after BCG, representing a clinically important unmet need. Development and discovery of treatment options for BCG-unresponsive NMIBC is a high priority in order to decrease the morbidity, burden of health-care expenditures, and mortality related to bladder cancer. This Review of treatment options after BCG failure focuses on principles of optimal management emerging therapies, thus enabling a synthesis of recommendations for management for such patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Classification of patients with high-risk NMIBC after intravesical BCG and types of BCG failure.
Figure 2: Recommendations for management of patients after BCG failure.

Similar content being viewed by others

References

  1. Babjuk, M. et al. EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder: update 2016. Eur Urol. 71, 447–461 (2016).

    Article  PubMed  Google Scholar 

  2. Kamat, A. M. et al. Defining and treating the spectrum of intermediate risk nonmuscle invasive bladder cancer. J. Urol. 192, 305–315 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Shelley, M. et al. Intravesical bacillus Calmette–Guérin in Ta and T1 bladder cancer (review). Cochrane Database Syst. Rev. 4, CD001986 (2000).

    Google Scholar 

  4. Sfakianos, J. P., Kim, P. H., Hakimi, A. A. & Herr, H. W. The effect of restaging transurethral resection on recurrence and progression rates in patients with nonmuscle invasive bladder cancer treated with intravesical bacillus Calmette–Guerin. J. Urol. 191, 341–345 (2014).

    Article  PubMed  Google Scholar 

  5. Lamm, D. et al. Review article defining progression in nonmuscle invasive bladder cancer: it is time for a new, standard definition. J. Urol. 191, 20–27 (2014).

    Article  PubMed  Google Scholar 

  6. Cambier, S. et al. EORTC nomograms and risk groups for predicting recurrence, progression, and disease-specific and overall survival in non-muscle-invasive stage Ta–T1 urothelial bladder cancer patients treated with 1–3 years of maintenance bacillus Guerin. Eur. Urol. 69, 60–69 (2016).

    Article  PubMed  Google Scholar 

  7. Martínez-Piñeiro, J. A. et al. Bacillus Calmette–Guerin versus doxorubicin versus thiotepa: a randomized prospective study in 202 patients with superficial bladder cancer. J. Urol. 143, 502–506 (1990).

    Article  PubMed  Google Scholar 

  8. Kamat, A. M. et al. Definitions, end points, and clinical trial designs for non-muscle-invasive bladder cancer: recommendations from the International Bladder Cancer Group. J. Clin. Oncol. 34, 1935–1944 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mmeje, C. O. et al. Papillary recurrence of bladder cancer at first evaluation after induction bacillus Calmette–Guerin therapy: implication for clinical trial design. Eur Urol. 70, 778–785 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lamm, D. L. et al. Maintenance bacillus Calmette–Guerin immunotherapy for recurrent Ta, T1, and carcinoma in situ transitional cell carcinoma of the bladder: a randomized Southwest Oncology Group Study. J. Urol. 163, 1124–1129 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Bohle, A., Jocham, D. & Bock, P. Intravesical bacillus Calmette–Guerin versus mitomycin C for superficial bladder cancer: a formal meta-analysis of comparative studies of recurrence and toxicity. J. Urol. 169, 90–95 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Malmström, P.-U. et al. An individual patient data meta-analysis of the long-term outcome of randomised studies comparing intravesical mitomycin C versus bacillus Calmette–Guerin for non-muscle-invasive bladder cancer. Eur. Urol. 56, 247–256 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Hinotsu, S. et al. Maintenance therapy with bacillus Calmette–Guérin Connaught strain clearly prolongs recurrence-free survival following transurethral resection of bladder tumour for non-muscle-invasive bladder cancer. BJU Int. 108, 187–195 (2010).

    Article  PubMed  Google Scholar 

  14. Zhu, S. et al. Optimal schedule of bacillus Calmette–Guerin for non-muscle-invasive bladder cancer: a meta-analysis of comparative studies. BMC Cancer 13, 332 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Oddens, J. et al. Final results of an EORTC-GU cancers group randomized study of maintenance bacillus Calmette–Guerin rin in intermediate- and high- risk Ta, T1 papillary carcinoma of the urinary bladder: one-third dose versus full dose and 1 year versus 3 years of maintenance. Eur. Urol. 63, 462–472 (2013).

    Article  PubMed  Google Scholar 

  16. Sylvester, R. J. et al. Long-term efficacy results of EORTC genito-urinary group randomized phase 3 study 30911 comparing intravesical instillations of epirubicin, bacillus Calmette–Guerin, and bacillus Calmette–Guerin plus isoniazid in patients with intermediate- and high-risk. Eur. Urol. 57, 766–773 (2010).

    Article  PubMed  Google Scholar 

  17. Palou, J. et al. Control group and maintenance treatment with bacillus Calmette–Guerin for carcinoma in siute and/or high grade bladder tumors. J. Urol. 165, 1488–1491 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Kamat, A. M. & Porten, S. Myths and mysteries surrounding bacillus Calmette–Guerin therapy for bladder cancer. Eur. Urol. 65, 267–269 (2014).

    Article  PubMed  Google Scholar 

  19. Kamat, A. M. et al. Consensus statement on best practice management regarding the use of intravesical immunotherapy with BCG for bladder cancer. Nat. Rev. Urol. 12, 225–235 (2015).

    Article  PubMed  Google Scholar 

  20. Gakis, G. et al. ICUD-EAU international consultation on bladder cancer 2012: radical cystectomy and bladder preservation for muscle-invasive urothelial carcinoma of the bladder. Eur. Urol. 63, 45–57 (2013).

    Article  PubMed  Google Scholar 

  21. Babjuk, M. et al. EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder: update 2013. Eur. Urol. 64, 639–653 (2013).

    Article  PubMed  Google Scholar 

  22. Chang, S. S. et al. Diagnosis and treatment of non-muscle invasive bladder cancer: AUA/SUO Guideline [online] https://www.auanet.org/common/pdf/education/clinical-guidance/Non-Muscle-Invasive-Bladder-Cancer.pdf (2016).

    Google Scholar 

  23. Lerner, S. et al. Clarification of bladder cancer disease states following treatment of patients with intravesical BCG. Bl Cancer 1, 29–30 (2015).

    Article  PubMed  Google Scholar 

  24. Jarow, J. P. et al. Clinical trial design for the development of new therapies for nonmuscle-invasive bladder cancer: report of a Food and Drug Administration and American Urological Association public workshop. Urology 83, 262–265 (2013).

    Article  PubMed  Google Scholar 

  25. Shah, J. B. & Kamat, A. M. Strategies for optimizing bacillus Calmette–Guerin. Urol. Clin. North Am. 40, 211–218 (2013).

    Article  PubMed  Google Scholar 

  26. Kamat, A. M., Cookson, M., Witjes, J. A., Stenzl, A. & Grossman, H. B. The impact of blue light cystoscopy with hexaminolevulinate (HAL) on progression of bladder cancer — a new analysis. Bl Cancer 2, 273–278 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Burger, M. et al. ICUD-EAU international consultation on bladder cancer 2012: non-muscle-invasive urothelial carcinoma of the bladder. Eur. Urol. 63, 36–44 (2013).

    Article  PubMed  Google Scholar 

  28. Birkha, D., Recker, F., Thalmann, G. N. & Giannarini, G. Bacillus Calmette–Guerin failure in patients with non-muscle-invasive urothelial carcinoma of the bladder may be due to the urologist's failure to detect urothelial carcinoma of the upper urinary tract and urethra. Eur. Urol. 65, 825–831 (2014).

    Article  Google Scholar 

  29. Herr, H. W. & Sogani, P. C. Does early cystectomy improve the survival of patients with high risk superficial bladder tumors? J. Urol. 166, 1296–1299 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Haas, C. R. et al. The timing of radical cystectomy for bacillus Calmette–Guerin failure: comparison of outcomes and risk factors for prognosis. J. Urol. 195, 1704–1709 (2016).

    Article  PubMed  Google Scholar 

  31. Tilki, D. et al. Characteristics and outcomes of patients with clinical carcinoma in situ only treated with radical cystectomy: an international study of 243 patients. J. Urol. 183, 1757–1763 (2010).

    Article  PubMed  Google Scholar 

  32. Leow, J. J. et al. Propensity-matched comparison of morbidity and costs of open and robot-assisted radical cystectomies: a contemporary population-based analysis in the United States. Eur. Urol. 66, 569–576 (2014).

    Article  PubMed  Google Scholar 

  33. Stimson, C. J. et al. Early and late perioperative outcomes following radical cystectomy: 90-day readmissions, morbidity and mortality in a contemporary series. J. Urol. 184, 1296–1300 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Hounsome, L. S., Verne, J., Mcgrath, J. S. & Gillatt, D. A. Trends in operative caseload and mortality rates after radical cystectomy for bladder cancer in England for 1998–2010. Eur. Urol. 67, 1056–1062 (2015).

    Article  PubMed  Google Scholar 

  35. Liberman, D. et al. Septuagenarian and octogenarian patients treated with radical cystectomy for urothelial carcinoma of the bladder. Urology 77, 660–666 (2011).

    Article  PubMed  Google Scholar 

  36. Gospodarowicz, M. K. et al. Bladder cancer: long-term follow-up results of patients treated with radical radiation. Clin. Oncol. (R. Coll. Radiol.) 3, 155–161 (1991).

    Article  CAS  Google Scholar 

  37. Harland, S. J. et al. A randomized trial of radical radiotherapy for the management of pT1G3 NXM0 transitional cell carcinoma of the bladder. J. Urol. 178, 807–813 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Weiss, C., Wolze, C., Engehausen, D. G., Ott, O. J. & Krause, F. S. Radiochemotherapy after transurethral resection for high-risk T1 bladder cancer: an alternative to intravesical therapy or early cystectomy? J. Clin. Oncol. 24, 2318–2324 (2016).

    Article  Google Scholar 

  39. Wo, J. Y. et al. The results of concurrent chemo-radiotherapy for recurrence after treatment with bacillus Calmette–Guérin for non-muscle-invasive bladder cancer: is immediate cystectomy always necessary? BJU Int. 104, 179–183 (2008).

    Article  PubMed  Google Scholar 

  40. Shipley, W. et al. Full-dose irradiation for patients with invasive bladder carcinoma: clinical and histological factors prognostic of improved survival. J. Urol. 134, 679–683 (2007).

    Article  Google Scholar 

  41. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00981656?term=00981656&rank=1 (2015).

  42. Steinberg, G. et al. Efficacy and safety of valrubicin for the treatment of bacillus Calmette–Guerin refractory carcinoma in situ of the bladder. J. Urol. 163, 761–767 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Dinney, C. P. N. et al. Intravesical valrubicin in patients with bladder carcinoma in situ and contraindication to or failure after bacillus Calmette-Guérin. Urol. Oncol. 31, 1635–1642 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Cookson, M. S. et al. Use of intravesical valrubicin in clinical practice for treatment of nonmuscle-invasive bladder cancer, including carcinoma in situ of the bladder. Ther. Adv. Urol. 6, 181–191 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dalbagni, B. G. et al. Phase I trial of intravesical gemcitabine Calmette–Guerin-refractory transitional-cell carcinoma of the bladder. J. Clin. Oncol. 20, 3193–3198 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Dalbagni, G. et al. Phase II trial of intravesical gemcitabine in bacille Calmette–Guérin-refractory transitional cell carcinoma of the bladder. J. Clin. Oncol. 24, 2729–2734 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Skinner, E. C. et al. SWOG S0353: phase II trial of intravesical gemcitabine in patients with nonmuscle invasive bladder cancer and recurrence rin after 2 prior courses of intravesical bacillus Calmette–Guerin. J. Urol. 190, 1200–1204 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lorenzo, G. Di, Perdona, S. et al. Gemcitabine versus bacille Calmette–Guerin after initial bacille Calmette–Guerin failure in non-muscle-invasive bladder cancer: a multicenter prospective randomized trial. Cancer 116, 1893–1900 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Addeo, R. et al. Randomized phase III trial on gemcitabine versus mytomicin in recurrent superficial bladder cancer: evaluation of efficacy and tolerance. J. Clin. Oncol. 28, 543–548 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Laudano, M. A. et al. Long-term clinical outcomes of a phase I trial of intravesical docetaxel in the management of non-muscle-invasive bladder cancer. Urology 75, 134–137 (2010).

    Article  PubMed  Google Scholar 

  51. Barlow, L. J., Mckiernan, J. M. & Benson, M. C. Long-term survival outcomes with intravesical docetaxel for recurrent nonmuscle invasive bladder cancer after previous bacillus Calmette–Guérin therapy. J. Urol. 189, 834–839 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Mckiernan, J. M. et al. Phase II trial of intravesical nanoparticle albumin bound paclitaxel for the treatment of nonmuscle invasive urothelial carcinoma of the bladder after bacillus Calmette–Guerin treatment failure. J. Urol. 192, 1633–1638 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Velaer, K. N., Steinberg, R. L., Thomas, L. J., O'Donnell, M. A. & Nepple, K. G. Experience with sequential intravesical gemcitabine and docetaxel as salvage therapy for non-muscle invasive bladder cancer. Curr. Urol. Rep. 17, 1–5 (2016).

    Article  Google Scholar 

  54. Lightfoot, A. J. et al. Multi-institutional analysis of sequential intravesical gemcitabine and mitomycin C chemotherapy for non-muscle invasive bladder cancer. Urol. Oncol. 32, 35.e15–35.e19 (2014).

    Article  CAS  Google Scholar 

  55. Brausi, M. et al. Intravesical electromotive administration of drugs for treatment of superficial bladder cancer: a comparative phase II study. Urology 51, 506–509 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Chien, Y. & Banga, A. Iontophoretic (transdermal) delivery of drugs: overview of historical development. J. Pharm. Sci. 78, 353–354 (1989).

    Article  CAS  PubMed  Google Scholar 

  57. Di Stasi, S. M. et al. Electromotive versus passive diffusion of mitomycin C into human bladder wall: concentration–depth profiles studies. Cancer Res. 59, 4912–4918 (1999).

    CAS  PubMed  Google Scholar 

  58. Di Stasi, S. M. et al. Electromotive instillation of mitomycin immediately before transurethral resection for patients with primary urothelial non-muscle invasive bladder cancer: a randomised controlled trial. Lancet Oncol. 12, 871–879 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Di Stasi, S. M. et al. Sequential BCG and electromotive mitomycin versus BCG alone for high-risk superficial bladder cancer: a randomised controlled trial. Lancet Oncol. 7, 43–51 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Gan, C. et al. Sequential bacillus Calmette–Guerin/electromotive drug administration of mitomycin C as the standard intravesical regimen in high risk nonmuscle invasive bladder cancer: 2-year outcomes. J. Urol. 195, 1697–1703 (2016).

    Article  PubMed  Google Scholar 

  61. Di Stasi, S. M. et al. Intravesical electromotive mitomycin C versus passive transport mitomycin C for high risk superfical bladder cancer: a prospective randomized study. J. Urol. 170, 777–782 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Arends, T. J., van der Heijden, A. G. & Witjes, J. A. Combined chemohyperthermia: 10-year single center experience in 160 patients with nonmuscle invasive bladder cancer. J. Urol. 192, 708–713 (2014).

    Article  PubMed  Google Scholar 

  63. van Valenberga, H., Colombo, R. & Witjes, F. Intravesical radiofrequency-induced hyperthermia combined with chemotherapy for non-muscle-invasive bladder cancer. Int. J. Hyperthermia 32, 351–362 (2016).

    Article  CAS  Google Scholar 

  64. Nativ, O. et al. Combined thermo-chemotherapy for recurrent bladder cancer after bacillus Calmette–Guerin. J. Urol. 182, 1313–1317 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Ayres, B., Connor, A., Corbishley, C. & Bailey, M. Radiofrequency hyperthermia and mitomycin C for the management of frail patients with high-risk non-muscle invasive bladder cancer who fail intravesical BCG treatment. BJU Int. 106 (Suppl. 1), 8, abstr.132 (2010).

    Article  Google Scholar 

  66. Moskovitz, B., Halachmi, S., Moskovitz, M. & Nativ, O. 10-year single-center experience of combined intravesical chemohyperthermia for nonmuscle invasive bladder cancer. Future Oncol. 8, 1041–1049 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Sooriakumaran, P. et al. Predictive factors for time to progression after hyperthermic mitomycin C treatment for high-risk non-muscle invasive urothelial carcinoma of the bladder: an observational cohort study of 97 patients. Urol. Int. 96, 83–90 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Witjes, J. A., Hendricksen, K. & Nativ, O. R. O. Intravesical hyperthermia and mitomycin-C for carcinoma in situ of the urinary bladder: experience of the European Synergo® working party. World J. Urol. 27, 319–324 (2009).

    Article  CAS  Google Scholar 

  69. Halachmi, S. et al. Intravesical mitomycin C combined with hyperthermia for patients with T1G3 transitional cell carcinoma of the bladder. Urol. Oncol. 29, 259–264 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Lammers, R. J. M., Witjes, J. A., Inman, B. A. & Leibovitch, I. The role of a combined regimen with intravesical chemotherapy and hyperthermia in the management of non-muscle-invasive bladder cancer: a systematic review. Eur. Urol. 60, 81–93 (2011).

    Article  PubMed  Google Scholar 

  71. Arends, T. J. H. et al. Results of a randomised controlled trial comparing intravesical chemohyperthermia with mitomycin C versus bacillus Calmette–Guerin for adjuvant treatment of patients with intermediate- and high-risk non-muscle-invasive bladder cancer. Eur. Urol. 69, 1046–1052 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Bui, T. & Schellhammer, F. Additional bacillus Calmette–Guerin therapy for recurrent transitional cell carcinoma after an initial complete response. Urology 49, 687–691 (1997).

    Article  CAS  PubMed  Google Scholar 

  73. Dalbagni, G. & Herr, H. W. Current use and questions concerning intravesical bladder cancer group for superficial bladder cancer. Urol. Clin. North Am. 27, 137–146 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Reijke, T. M.D. E. et al. Bacillus Calmette–Guerin versus epirubicin for primary, secondary, or concurrent carcinoma in situ of the bladder: results of a European organization for the research and treatment of cancer — Genitourinary Group phase III trial (30906). J. Urol. 173, 405–409 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. NCCN clinical practice guidelines in oncology: bladder cancer. NCCN [online] https://www.nccn.org/professionals/physician_gls/f_guidelines.asporg (2016).

  76. Catalona, W., Hudson, M., Gillen, D., Andriole, G. & Ratliff, T. Risks and benefits of repeated courses of intravesical bacillus Calmette–Guerin therapy for superficial bladder cancer. J. Urol. 137, 220–224 (1987).

    Article  CAS  PubMed  Google Scholar 

  77. Steinberg, R. L., Thomas, L. J., Mott, S. L. & O'Donnell, M. A. Bacillus Calmette–Guerin (BCG) treatment failures with non-muscle invasive bladder cancer: a data-driven definition for BCG unresponsive disease. Bl Cancer 2, 215–224 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Papageorgiou, A. et al. Role of tumor necrosis factor-related apoptosis-inducing ligand in interferon-induced apoptosis in human bladder cancer cells. Cancer Res. 2004, 8973–8979 (2004).

    Article  Google Scholar 

  79. Joudi, F. N., Smith, B. J., & O'Donnell, M. A. Final results from a national multicenter phase II trial of combination bacillus Calmette–Guérin plus interferon alpha-2B for reducing recurrence of superficial bladder cancer. Urol. Oncol. 24, 344–348 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Gallagher, B. L., Joudi, F. N., Maymí, J. L. & O'Donnell, M. A. Impact of previous bacille Calmette–Guérin failure pattern on subsequent response to bacille Calmette–Guerin plus interferon intravesical therapy. Urology 71, 297–301 (2008).

    Article  PubMed  Google Scholar 

  81. Nepple, K. G. et al. Bacillus Calmette–Guérin with or without interferon alpha-2b and megadose versus recommended daily allowance vitamins during induction and maintenance intravesical treatment of nonmuscle invasive bladder cancer. J. Urol. 184, 1915–1919 (2010).

    Article  PubMed  Google Scholar 

  82. Rosevear, H. M. et al. Factors affecting response to bacillus Calmette–Guérin plus interferon for urothelial carcinoma in situ. J. Urol. 186, 817–823 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Rucker, F. & Rubin, H. Variation of the immunosystem by ciclosporin and keyhole-limpet hemocyanin — are there effects on chemically induced bladder carcinoma? Urol. Int. 44, 77–80 (1989).

    Article  Google Scholar 

  84. Lammers, R. J. M., Witjes, W. P. J., Janzing-Pastors, M. H., Caris, C. T. & Witjes, J. A. Intracutaneous and intravesical immunotherapy with keyhole limpet hemocyanin compared with intravesical mitomycin in patients with non-muscle-invasive bladder cancer: results from a prospective randomized phase III trial. J. Clin. Oncol. 30, 2273–2279 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Witjes, W. P. et al. Results of a European comparative randomized study comparing oral bropirimine versus intravesical BCG treatment in BCG-naive patients with carcinoma in situ of the urinary bladder. European Bropirimine Study Group. Eur. Urol. 36, 576–581 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Sarosdy, M. F. et al. A phase II clinical trial of oral bropirimine in combination with intravesical bacillus Calmette–Guérin for carcinoma in situ of the bladder: a Southwest Oncology Group study. Urol. Oncol. 23, 386–389 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Biot, C. et al. Preexisting BCG-specific T cells improve intravesical immunotherapy for bladder cancer. Sci. Transl Med. 4, 1–10 (2012).

    Article  CAS  Google Scholar 

  88. Badalament, B. R. A. et al. A Prospective randomized trial of maintenance versus nonmaintenance intravesical bacillus Calmette–Guerin therapy of superficial bladder cancer. J. Clin. Oncol. 5, 441–449 (1987).

    Article  CAS  PubMed  Google Scholar 

  89. Witjes, J. A., Fransen, M. P. H., van der Meijden, A. P. M., Doesburg, W. H. & Debruyne, F. M. J. Use of maintenance intravesical bacillus Calmette–Guérin (BCG), with or without intradermal BCG, in patients with recurrent superficial bladder cancer. Long-term follow-up of a randomized phase 2 study. Urol. Int. 51, 67–72 (1993).

    Article  CAS  PubMed  Google Scholar 

  90. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02326168?term=02326168&rank=1 (2015).

  91. Filion, M. C., Lépicier, P., Morales, A. & Phillips, N. C. Mycobacterium phlei cell wall complex directly induces apoptosis in human bladder cancer cells. Br. J. Cancer 79, 229–235 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Morales, A. et al. Efficacy and safety of MCNA in patients with nonmuscle invasive bladder cancer at high risk for recurrence and progression rin after failed treatment with bacillus Calmette–Guerin. J. Urol. 193, 1135–1143 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Powles, T. et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515, 558–562 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Rosenberg, J. E. et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 387, 1909–1920 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02625961?term=02625961&rank=1 (2017).

  96. Kamat, A. M. KEYNOTE-057: phase 2 study of pembrolizumab for patients with BCG-unresponsive, high-risk non-muscle-invasive bladder cancer (NMIBC) [abstract]. J. Clin. Oncol. 34 (Suppl.), TPS4576 (2016).

    Article  Google Scholar 

  97. Burke, J. M. et al. A first in human phase 1 study of CG0070, a GM-CSF expressing oncolytic adenovirus, for the treatment of nonmuscle invasive bladder cancer. J. Urol. 188, 2391–2397 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02365818?term=02365818&rank=1 (2016).

  99. Yamashita, M. et al. Syn3 provides high levels of intravesical adenoviral-mediated gene transfer for gene therapy of genetically altered urothelium and superficial bladder cancer. Cancer Gene Ther. 9, 687–691 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Dinney, C. P. N. et al. Phase I trial of intravesical recombinant adenovirus mediated interferon-α2b formulated in Syn3 for bacillus Calmette–Guérin failures in nonmuscle invasive bladder cancer. J. Urol. 190, 850–856 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Dinney, C. P. Emerging therapy for BCG unresponsive NMIBC. Presented at the Society of Urologic Oncology Winter Meeting (Washington, D.C.), SUO-CTC Scientific Session (2015).

  102. Sundi, D. et al. In vitro effects of interferon alpha in bladder cancer: immune checkpoint expression and microRNA and mRNA genomic profiling [abstract MP83-12]. J. Urol. 195 (Suppl.), e1085 (2016).

    Google Scholar 

  103. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02773849?term=02773849&rank=1 (2017).

  104. Waidelich, R., Stepp, H., Baumgartner, R. & Weninger, E. Clinical experience with 5-aminolevulinic acid and photodynamic therapy for refractory superficial bladder cancer. J. Urol. 165, 1904–1907 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Bader, M. J. et al. Photodynamic therapy of bladder cancer — a phase I study using hexaminolevulinate (HAL). Urol. Oncol. 31, 1178–1183 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Kamat, A. M. et al. Bladder cancer. Lancet 388, 2796–2810 (2016).

    Article  PubMed  Google Scholar 

  107. van Kessel, K., Zuiverloon, T., Alberts, A., Boormans, J. & Zwarthoff, E. Targeted therapies in bladder cancer: an overview of in vivo research. Nat. Rev. Urol. 12, 681–694 (2015).

    Article  CAS  PubMed  Google Scholar 

  108. Choueiri, T. K. et al. Double-blind, randomized trial of docetaxel plus vandetanib versus docetaxel plus placebo in platinum-pretreated metastatic urothelial cancer. J. Clin. Oncol. 30, 507–512 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. Milowsky, M. I. et al. Final results of a multicenter, open-label phase II trial of dovitinib (TKI258) in patients with advanced urothelial carcinoma with either mutated or nonmutated FGFR3 [abstract]. J. Clin. Oncol. 31 (Suppl. 6), 255 (2013).

    Article  Google Scholar 

  110. Hussain, M. H. A. et al. Trastuzumab, paclitaxel, carboplatin, and gemcitabine in advanced human epidermal growth factor receptor-2/neu–positive urothelial carcinoma: results of a multicenter phase II National Cancer Institute Trial. J. Clin. Oncol. 25, 2218–2224 (2016).

    Article  CAS  Google Scholar 

  111. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01732107?term=01732107&rank=1 (2016).

  112. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01259063?term=01259063&rank=1 (2016).

  113. Kowalski, M. et al. A phase I study of an intravesically administered immunotoxin targeting EpCAM for the treatment of nonmuscle-invasive bladder cancer in BCG-refractory and BCG-intolerant patients. Drug Des. Devel. Ther. 4, 313–230 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02449239?term=02449239&rank=1 (2016).

  115. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01118351?term=01118351&rank=1 (2015).

  116. Ahn, J. J. & Mckiernan, J. M. New agents for bacillus Calmette–Guerin-refractory bladder cancer. Urol. Clin. North Am. 40, 219–232 (2013).

    Article  PubMed  Google Scholar 

  117. Fishman, M. N. et al. Phase I trial of ALT-801, an interleukin-2/T-cell receptor fusion protein targeting p53 (aa264-272)/HLA-A*0201 complex, in patients with advanced malignancies. Clin. Cancer Res. 17, 7765–7776 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01625260?term=01625260&rank=1 (2017).

  119. Chen, J., Leu, Y., Fang, C., Chen, C. & Fang, J. Thermosensitive hydrogels composed of hyaluronic acid and gelatin as carriers for the intravesical administration of cisplatin. J. Pharm. Sci. 100, 655–666 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02701023?term=02701023&rank=1 (2016).

  121. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02720367?term=02720367&rank=1 (2016).

  122. Binder, R. J., Han, D. K. & Srivastava, P. K. CD91: a receptor for heat shock protein gp96. Nat. Immunol. 1, 151–155 (2000).

    Article  CAS  PubMed  Google Scholar 

  123. Steinberg, G. et al. Phase I/II study of patients with non-muscle invasive bladder cancer (NMIBC) treated with vesigenurtacel-L (HS-410) with or without bacillus Calmette–Guérin (BCG). Presented at the AACR 2016 Annu Meet [online] http://content.stockpr.com/heatbio/db/114/1119/file/AACR+2016_HS-410_NMIBC_Phase1.pdf (2016).

  124. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02010203?term=02010203&rank=1 (2016).

  125. Gulley, J. L. et al. A pilot study to evaluate the safety and clinical outcomes of vaccination with recombinant CEA-MUC-1-TRICOM (PANVAC) poxviral-based vaccines in patients with metastatic carcinoma. Clin. Cancer Res. 14, 3060–3069 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02015104?term=02015104&rank=1 (2017).

  127. Lee, E. K. et al. A Smac mimetic augments the response of urothelial cancer cells to gemcitabine and cisplatin. Cancer Biol. Ther. 14, 812–822 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Metwalli, A. R. et al. Smac mimetic reverses resistance to TRAIL and chemotherapy in human urothelial cancer cells. Cancer Biol. Ther. 10, 885–892 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Yang, X. et al. Diphtheria toxin-epidermal growth factor fusion protein DAB389EGF for the treatment of bladder cancer. Clin. Cancer Res. 19, 148–157 (2013).

    Article  CAS  PubMed  Google Scholar 

  130. Cho, S. et al. Functionalized gold nanorods for thermal ablation treatment of bladder cancer. J. Biomed. Nanotechnol. 10, 1267–1276 (2014).

    Article  CAS  PubMed  Google Scholar 

  131. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02009332?term=02009332&rank=1 (2016).

  132. Riedl, C. R., Knoll, M., Plas, E. & Pfluger, H. Intravesical electromotive drug administration technique: preliminary results and side effects. J. Urol. 159, 1851–1856 (1998).

    Article  CAS  PubMed  Google Scholar 

  133. Colombo, R. et al. Thermo-chemotherapy and electromotive drug administration of mitomycin C in superficial bladder cancer eradication: a pilot study on marker lesion. Eur. Urol. 39, 95–100 (2001).

    Article  CAS  PubMed  Google Scholar 

  134. Bachir, B. G. et al. Contemporary cost-effectiveness analysis comparing sequential bacillus Calmette–Guerin and electromotive mitomycin versus bacillus Calmette–Guerin alone for patients with high-risk non-muscle-invasive bladder cancer. Cancer 120, 2424–2431 (2014).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made a substantial contribution to discussions of content, and wrote and reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Ashish M. Kamat.

Ethics declarations

Competing interests

A.K. declares that he has acted as a consultant for Cepheid, Photocure,Telesta Therapeutics, Sanofi, Merck, Abbott Molecular, Theralase, Heat Biologics, Spectrum Pharmaceuticals, and Oncogenix. He has received grant support from FKD Industries, Photocure, Merck, and Heat Biologics, and he has a patent pending for a cytokine assay for BCG (CYPRIT) with the University of Texas MD Anderson Cancer Center. J.A.W. declares that he has acted as an adviser for MEL. J.P. declares clinical trial collaborations with Combat Medical and Presurgery. D.L. declares research collaborations with Vicinium and Cold Genesys-CG0070. R.B. declares that he has acted as a consultant for Sanofi. The other authors declare no competing interests.

PowerPoint slides

Glossary

BCG intolerant

Scenario when a patient cannot receive BCG owing to treatment-related adverse effects.

BCG refractory

Presence of persistent high-grade cancer 6 months after the start of induction therapy, or cancers that have progressed by grade or stage 3 months after the start of induction therapy.

BCG relapse

Indicates cancer recurrence after achieving a disease-free state at 6 months after treatment.

BCG unresponsive

Denotes the group of patients with BCG-refractory tumours and those who are BCG-relapsing within 6 months of their last BCG exposure.

Type I error, α

Probability of incorrectly rejecting a true null hypothesis (false positive).

Type II error, β

Probability of incorrectly accepting a false null hypothesis (false negative).

Power, 1-β

The chance that a study will successfully demonstrate a true result.

Intradermal priming

Intradermal injection of BCG vaccine in order to induce BCG-specific memory T cells

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamat, A., Colombel, M., Sundi, D. et al. BCG-unresponsive non-muscle-invasive bladder cancer: recommendations from the IBCG. Nat Rev Urol 14, 244–255 (2017). https://doi.org/10.1038/nrurol.2017.16

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2017.16

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing