Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Kisspeptin signalling in the physiology and pathophysiology of the urogenital system

Key Points

  • Kisspeptin — a peptide hormone that acts via the G-protein-coupled receptor KISS1R — is implicated in the regulation of a number of biological processes, such as reproduction, metabolism, and cancer metastasis

  • Kisspeptin–KISS1R signalling is involved in the physiology and pathophysiology of the urogenital system via both indirect (hypothalamic) and direct (gonadal) actions

  • Kisspeptin and KISS1R are expressed in the mammalian ovary and are responsive to various factors including gonadotropin, environmental, and metabolic cues

  • Kisspeptin expression in Leydig cells alters during different stages of postnatal developmental and is regulated by luteinizing hormone

  • Kisspeptin inhibits metastasis of various tumours, including urogenital carcinomas

Abstract

Kisspeptin is a peptide hormone, which signals via the G-protein-coupled kisspeptin receptor (KISS1R). Kisspeptin–KISS1R signalling has been implicated in various physiological and pathophysiological processes in the urogenital system, including critical roles in ovarian function as a key player in the regulation of oocyte development. Kisspeptin also has roles in several different functions of the male reproductive tract, such as spermatogenesis and sperm capacitation, and is also thought to be involved in kidney physiology — studies in preclinical animal models have reported that expression of kisspeptin and/or KISS1R is altered in chronically impaired kidneys. The wider importance of kisspeptin action in the urogenital tract has been highlighted by the finding that it suppresses metastasis of urogenital carcinomas; besides the possible therapeutic potential of this finding, tissue and tumour-stage-specific alterations in kisspeptin and KISS1/KISS1R expression could potentially be used as biomarkers for the diagnosis and prognosis of urogenital carcinomas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Possible mechanisms by which kisspeptins exert their biological actions via KISS1R.
Figure 2: Potential role of kisspeptin in the testis.
Figure 3: Potential role of kisspeptin in the ovary.
Figure 4: Effects of alterations in expression of kisspeptin peptide and/or the KISS1 and KISS1R genes on cellular processes leading to metastasis and tumour angiogenesis.

Similar content being viewed by others

References

  1. Plant, T. M. The role of KiSS-1 in the regulation of puberty in higher primates. Eur. J. Endocrinol. 155, S11–S16 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Lee, J. H. et al. KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. J. Natl Cancer Inst. 88, 1731–1737 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Jiang, W. The Kiss-1/Kiss-1R complex as a negative regulator of cell motility and cancer metastasis (review). Int. J. Mol. Med. 32, 747–754 (2013).

    Article  PubMed  CAS  Google Scholar 

  4. Makri, A., Pissimissis, N., Lembessis, P., Polychronakos, C. & Koutsilieris, M. The kisspeptin (KiSS-1)/GPR54 system in cancer biology. Cancer Treat. Rev. 34, 682–692 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Cvetkovic, D. et al. KISS1R induces invasiveness of estrogen receptor-negative human mammary epithelial and breast cancer cells. Endocrinology 154, 1999–2014 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Martin, T. A., Watkins, G. & Jiang, W. G. KiSS-1 expression in human breast cancer. Clin. Exp. Metastasis 22, 503–511 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Schmid, K. et al. KiSS-1 overexpression as an independent prognostic marker in hepatocellular carcinoma: an immunohistochemical study. Virchows Arch. 450, 143–149 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Song, G.-Q. & Zhao, Y. Kisspeptin-10 inhibits the migration of breast cancer cells by regulating epithelial-mesenchymal transition. Oncol. Rep. 33, 669–674 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Olbrich, T. et al. Kisspeptin-10 inhibits bone-directed migration of GPR54-positive breast cancer cells: evidence for a dose–window effect. Gynecol. Oncol. 119, 571–578 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Shengbing, Z., Feng, L. J., Bin, W., Lingyun, G. & Aimin, H. Expression of KiSS-1 gene and its role in invasion and metastasis of human hepatocellular carcinoma. Anat. Rec. (Hoboken) 292, 1128–1134 (2009).

    Article  CAS  Google Scholar 

  11. Siegel, R., Naishadham, D. & Jemal, A. Cancer statistics, 2013. CA Cancer J. Clin. 63, 11–30 (2013).

    Article  PubMed  Google Scholar 

  12. Nawaz, M. et al. The emerging role of extracellular vesicles as biomarkers for urogenital cancers. Nat. Rev. Urol. 11, 688–701 (2014).

    Article  PubMed  Google Scholar 

  13. Chen, Y., Yusenko, M. V. & Kovacs, G. Lack of KISS1R expression is associated with rapid progression of conventional renal cell carcinomas. J. Pathol. 223, 46–53 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Jayasena, C. N. et al. Plasma kisspeptin: a potential biomarker of tumor metastasis in patients with ovarian carcinoma. Clin. Chem. 58, 1061–1063 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Hata, K., Dhar, D. K., Watanabe, Y., Nakai, H. & Hoshiai, H. Expression of metastin and a G-protein-coupled receptor (AXOR12) in epithelial ovarian cancer. Eur. J. Cancer 43, 1452–1459 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Takeda, T. et al. Prognostic role of KiSS-1 and possibility of therapeutic modality of metastin, the final peptide of the KiSS-1 gene, in urothelial carcinoma. Mol. Cancer Ther. 11, 853–863 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Cebrian, V. et al. KISS1 methylation and expression as tumor stratification biomarkers and clinical outcome prognosticators for bladder cancer patients. Am. J. Pathol. 179, 540–546 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ruppen, I. et al. Differential protein expression profiling by iTRAQ-two-dimensional LC-MS/MS of human bladder cancer EJ138 cells transfected with the metastasis suppressor KiSS-1 gene. Mol. Cell. Proteomics 9, 2276–2291 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, H. et al. Clinical and biological significance of KISS1 expression in prostate cancer. Am. J. Pathol. 180, 1170–1178 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Curtis, A. E. et al. Kisspeptin is released from human prostate cancer cell lines but plasma kisspeptin is not elevated in patients with prostate cancer. Oncol. Rep. 23, 1729–1734 (2010).

    CAS  PubMed  Google Scholar 

  21. Zhang, H., Guo, Y., Shang, C., Song, Y. & Wu, B. miR-21 downregulated TCF21 to inhibit KISS1 in renal cancer. Urology 80, 1298–1302. e1 (2012).

    Article  PubMed  Google Scholar 

  22. Shoji, S. et al. Metastin inhibits migration and invasion of renal cell carcinoma with overexpression of metastin receptor. Eur. Urol. 55, 441–449 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Pinilla, L., Aguilar, E., Dieguez, C., Millar, R. P. & Tena-Sempere, M. Kisspeptins and reproduction: physiological roles and regulatory mechanisms. Physiol. Rev. 92, 1235–1316 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Wahab, F., Quinton, R. & Seminara, S. B. The kisspeptin signaling pathway and its role in human isolated GnRH deficiency. Mol. Cell. Endocrinol. 346, 29–36 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wahab, F., Shahab, M. & Behr, R. The involvement of gonadotropin inhibitory hormone and kisspeptin in the metabolic regulation of reproduction. J. Endocrinol. 225, R49–R66 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Silveira, L. G., Latronico, A. C. & Seminara, S. B. Kisspeptin and clinical disorders. Adv. Exp. Med. Biol. 784, 187–199 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. George, J. T. & Seminara, S. B. Kisspeptin and the hypothalamic control of reproduction: lessons from the human. Endocrinology 153, 5130–5136 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. de Roux, N. et al. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc. Natl Acad. Sci. USA 100, 10972–10976 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Seminara, S. B. et al. The GPR54 gene as a regulator of puberty. N. Engl. J. Med. 349, 1614–1627 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Topaloglu, A. K. et al. Inactivating KISS1 mutation and hypogonadotropic hypogonadism. N. Engl. J. Med. 366, 629–635 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Chan, Y.-M. et al. GnRH-deficient phenotypes in humans and mice with heterozygous variants in KISS1/Kiss1. J. Clin. Endocrinol. Metab. 96, E1771–E1781 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Teles, M. G. et al. A GPR54-activating mutation in a patient with central precocious puberty. N. Engl. J. Med. 358, 709–715 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Uenoyama, Y. et al. Lack of pulse and surge modes and glutamatergic stimulation of luteinising hormone release in Kiss1 knockout rats. J. Neuroendocrinol. 27, 187–197 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. d'Anglemont de Tassigny, X. et al. Hypogonadotropic hypogonadism in mice lacking a functional Kiss1 gene. Proc. Natl Acad. Sci. USA 104, 10714–10719 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lapatto, R. et al. Kiss1−/− mice exhibit more variable hypogonadism than Gpr54−/− mice. Endocrinology 148, 4927–4936 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Kirilov, M. et al. Dependence of fertility on kisspeptin–Gpr54 signaling at the GnRH neuron. Nat. Commun. 4, 2492 (2013).

    Article  PubMed  CAS  Google Scholar 

  37. Shahab, M. et al. Increased hypothalamic GPR54 signaling: a potential mechanism for initiation of puberty in primates. Proc. Natl Acad. Sci. USA 102, 2129–2134 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Irwig, M. S. et al. Kisspeptin activation of gonadotropin releasing hormone neurons and regulation of KiSS-1 mRNA in the male rat. Neuroendocrinology 80, 264–272 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Gottsch, M. L. et al. A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology 145, 4073–4077 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Lee, D. K. et al. Discovery of a receptor related to the galanin receptors. FEBS Lett. 446, 103–107 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Kotani, M. et al. The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J. Biol. Chem. 276, 34631–34636 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Muir, A. I. et al. AXOR12, a novel human G protein-coupled receptor, activated by the peptide KiSS-1. J. Biol. Chem. 276, 28969–28975 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Ohtaki, T. et al. Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature 411, 613–617 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Castellano, J. M. et al. Expression of KiSS-1 in rat ovary: putative local regulator of ovulation? Endocrinology 147, 4852–4862 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Gaytán, F. et al. KiSS-1 in the mammalian ovary: distribution of kisspeptin in human and marmoset and alterations in KiSS-1 mRNA levels in a rat model of ovulatory dysfunction. Am. J. Physiol. Endocrinol. Metab. 296, E520–E531 (2009).

    Article  PubMed  CAS  Google Scholar 

  46. Tariq, A. R. et al. Kiss1 and Kiss1 receptor expression in the rhesus monkey testis: a possible local regulator of testicular function. Cent. Eur. J. Biol. 8, 968–974 (2013).

    CAS  Google Scholar 

  47. Gaytán, M. et al. Expression of KiSS-1 in rat oviduct: possible involvement in prevention of ectopic implantation? Cell Tissue Res. 329, 571–579 (2007).

    Article  PubMed  CAS  Google Scholar 

  48. Cejudo Roman, A. et al. Analysis of the expression of neurokinin B, kisspeptin, and their cognate receptors NK3R and KISS1R in the human female genital tract. Fertil. Steril. 97, 1213–1219 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Salehi, S. et al. Developmental and endocrine regulation of kisspeptin expression in mouse Leydig cells. Endocrinology 156, 1514–1522 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang, J.-Y. et al. Kisspeptin expression in mouse Leydig cells correlates with age. J. Chin. Med. Assoc. 78, 249–257 (2015).

    Article  PubMed  Google Scholar 

  51. Zhou, Q. et al. High-fat diet decreases the expression of Kiss1 mRNA and kisspeptin in the ovary, and increases ovulatory dysfunction in postpubertal female rats. Reprod. Biol. Endocrinol. 12, 127 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Dorfman, M. D. et al. Loss of Ntrk2/Kiss1r signaling in oocytes causes premature ovarian failure. Endocrinology 155, 3098–3111 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Saadeldin, I. M. et al. Paradoxical effects of kisspeptin: it enhances oocyte in vitro maturation but has an adverse impact on hatched blastocysts during in vitro culture. Reprod. Fertil. Dev. 24, 656–668 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Gaytan, F. et al. Kisspeptin receptor haplo-insufficiency causes premature ovarian failure despite preserved gonadotropin secretion. Endocrinology 155, 3088–3097 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Jayasena, C. N. et al. Kisspeptin-54 triggers egg maturation in women undergoing in vitro fertilization. J. Clin. Invest. 124, 3667–3677 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hsu, M.-C. et al. Kisspeptin modulates fertilization capacity of mouse spermatozoa. Reproduction 147, 835–845 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Pinto, F. M. et al. Characterization of the kisspeptin system in human spermatozoa. Int. J. Androl. 35, 63–73 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Abbara, A. et al. Efficacy of kisspeptin-54 to trigger oocyte maturation in women at high risk of OHSS during IVF therapy. J. Clin. Endocrinol. Metab. 100, 3322–3331 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Beck-Peccoz, P. & Persani, L. Premature ovarian failure. Orphanet J. Rare Dis. 1, 9 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Yi, T. et al. Regulation of embryonic kidney branching morphogenesis and glomerular development by KISS1 receptor (Gpr54) through NFAT2- and Sp1-mediated Bmp7 expression. J. Biol. Chem. 285, 17811–17820 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shoji, I. et al. Expression of kisspeptins and kisspeptin receptor in the kidney of chronic renal failure rats. Peptides 31, 1920–1925 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Bilban, M. et al. Kisspeptin-10, a KiSS-1/metastin-derived decapeptide, is a physiological invasion inhibitor of primary human trophoblasts. J. Cell Sci. 117, 1319–1328 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Terao, Y. et al. Expression of KiSS-1, a metastasis suppressor gene, in trophoblast giant cells of the rat placenta. Biochim. Biophys. Acta 1678, 102–110 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Gottsch, M. L., Clifton, D. K. & Steiner, R. A. From KISS1 to kisspeptins: an historical perspective and suggested nomenclature. Peptides 30, 4–9 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. López, F. J., Meade, E. H. & Negro-Vilar, A. Endogenous galanin modulates the gonadotropin and prolactin proestrous surges in the rat. Endocrinology 132, 795–800 (1993).

    Article  PubMed  Google Scholar 

  66. Kyrkouli, S. E., Stanley, B. G., Seirafi, R. D. & Leibowitz, S. F. Stimulation of feeding by galanin: anatomical localization and behavioral specificity of this peptide's effects in the brain. Peptides 11, 995–1001 (1990).

    Article  CAS  PubMed  Google Scholar 

  67. Sahu, A., Xu, B. & Kalra, S. P. Role of galanin in stimulation of pituitary luteinizing hormone secretion as revealed by a specific receptor antagonist, galantide. Endocrinology 134, 529–536 (1994).

    Article  CAS  PubMed  Google Scholar 

  68. Leibowitz, S. F. Regulation and effects of hypothalamic galanin: relation to dietary fat, alcohol ingestion, circulating lipids and energy homeostasis. Neuropeptides 39, 327–332 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Hori, A. et al. Metastin suppresses the motility and growth of CHO cells transfected with its receptor. Biochem. Biophys. Res. Commun. 286, 958–963 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Navenot, J.-M., Fujii, N. & Peiper, S. C. Activation of Rho and Rho-associated kinase by GPR54 and KiSS1 metastasis suppressor gene product induces changes of cell morphology and contributes to apoptosis. Mol. Pharmacol. 75, 1300–1306 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Ringel, M. D. et al. Metastin receptor is overexpressed in papillary thyroid cancer and activates MAP kinase in thyroid cancer cells. J. Clin. Endocrinol. Metab. 87, 2399 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Castellano, J. M. et al. Ontogeny and mechanisms of action for the stimulatory effect of kisspeptin on gonadotropin-releasing hormone system of the rat. Mol. Cell. Endocrinol. 257–258, 75–83 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Pampillo, M. et al. Regulation of GPR54 signaling by GRK2 and β-arrestin. Mol. Endocrinol. 23, 2060–2074 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mei, H., Doran, J., Kyle, V., Yeo, S.-H. & Colledge, W. H. Does kisspeptin signaling have a role in the testes? Front. Endocrinol. 4, 198 (2013).

    Article  Google Scholar 

  75. Sawyer, I. et al. The vasoactive potential of kisspeptin-10 in the peripheral vasculature. PLoS ONE 6, e14671 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mead, E. J., Maguire, J. J., Kuc, R. E. & Davenport, A. P. Kisspeptins are novel potent vasoconstrictors in humans, with a discrete localization of their receptor, G protein-coupled receptor 54, to atherosclerosis-prone vessels. Endocrinology 148, 140–147 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Chianese, R., Ciaramella, V., Fasano, S., Pierantoni, R. & Meccariello, R. Kisspeptin receptor, GPR54, as a candidate for the regulation of testicular activity in the frog Rana esculenta. Biol. Reprod. 88, 73 (2013).

    Article  PubMed  CAS  Google Scholar 

  78. Weinbauer, G. F., Luetjens, C. M., Simoni, M. & Nieschlag, E. in Andrology (eds Weinbauer, G. F. et al.) 11–59 (Springer, 2010).

    Book  Google Scholar 

  79. Irfan, S., Ehmcke, J., Wahab, F., Shahab, M. & Schlatt, S. Intratesticular action of kisspeptin in rhesus monkey (Macaca mulatta). Andrologia 46, 610–617 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Wahab, F., Aziz, F., Irfan, S., Zaman, W.-U. & Shahab, M. Short-term fasting attenuates the response of the HPG axis to kisspeptin challenge in the adult male rhesus monkey (Macaca mulatta). Life Sci. 83, 633–637 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Wahab, F., Zaman, W. -u. & Shahab, M. Differential response of the primate HPG axis to N-methyl-d, l-aspartate, but not to Kisspeptin challenge under euglycemic and hypoglycemic conditions. Horm. Metab. Res. 44, 451–457 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Ramaswamy, S. et al. Effect of continuous intravenous administration of human metastin 45–54 on the neuroendocrine activity of the hypothalamic–pituitary–testicular axis in the adult male rhesus monkey (Macaca mulatta). Endocrinology 148, 3364–3370 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Huma, T., Ulla, F., Hanif, F., D. Rizak, J. & Shahab, M. Peripheral administration of kisspeptin antagonist does not alter basal plasma testosterone but decreases plasma adiponectin levels in adult male rhesus macaques. Turk. J. Biol. 38, 450–456 (2014).

    Article  CAS  Google Scholar 

  84. Scott, G. et al. Double-blind, randomized, placebo-controlled study of safety, tolerability, pharmacokinetics and pharmacodynamics of TAK-683, an investigational metastin analogue in healthy men. Br. J. Clin. Pharmacol. 75, 381–391 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Semple, R. K. et al. Two novel missense mutations in G protein-coupled receptor 54 in a patient with hypogonadotropic hypogonadism. J. Clin. Endocrinol. Metab. 90, 1849–1855 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Anjum, S., Krishna, A., Sridaran, R. & Tsutsui, K. Localization of gonadotropin-releasing hormone (GnRH), gonadotropin-inhibitory hormone (GnIH), kisspeptin and GnRH receptor and their possible roles in testicular activities from birth to senescence in mice. J. Exp. Zool. A Ecol. Genet. Physiol. 317, 630–644 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Ramzan, M. H. et al. Insight into the serum kisspeptin levels in infertile males. Arch. Iran. Med. 18, 12–17 (2015).

    PubMed  Google Scholar 

  88. Chianese, R., Ciaramella, V., Fasano, S., Pierantoni, R. & Meccariello, R. Kisspeptin drives germ cell progression in the anuran amphibian Pelophylax esculentus: a study carried out in ex vivo testes. Gen. Comp. Endocrinol. 211, 81–91 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Rastogi, R. K., Iela, L., Saxena, P. K. & Chieffi, G. The control of spermatogenesis in the green frog, Rana esculenta. J. Exp. Zool. 196, 151–165 (1976).

    Article  CAS  Google Scholar 

  90. Meccariello, R. et al. Intra-testicular signals regulate germ cell progression and production of qualitatively mature spermatozoa in vertebrates. Front. Endocrinol. 5, 69 (2014).

    Google Scholar 

  91. Selvaraj, S. et al. Subcutaneous administration of Kiss1 pentadecapeptide accelerates spermatogenesis in prepubertal male chub mackerel (Scomber japonicus). Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 166, 228–236 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Huma, T. et al. Kisspeptin-10 modulates the proliferation and differentiation of the rhesus monkey derived stem cell line: R366.4. ScientificWorldJournal 2013, 135470 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Thompson, E. L. et al. Chronic subcutaneous administration of kisspeptin-54 causes testicular degeneration in adult male rats. Am. J. Physiol. Endocrinol. Metab. 291, E1074–E1082 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Ramzan, F. & Qureshi, I. Z. Intraperitoneal kisspeptin-10 administration induces dose-dependent degenerative changes in maturing rat testes. Life Sci. 88, 246–256 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Thompson, E. et al. Kisspeptin-54 at high doses acutely induces testicular degeneration in adult male rats via central mechanisms. Br. J. Pharmacol. 156, 609–625 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ramzan, F., Qureshi, I. Z., Ramzan, M., Ramzan, M. H. & Ramzan, F. Immature rat seminal vesicles show histomorphological and ultrastructural alterations following treatment with kisspeptin-10. Reprod. Biol. Endocrinol. 10, 18 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ramzan, F., Qureshi, I. Z., Ramzan, M., Ramzan, M. H. & Ramzan, F. Kisspeptin-10 induces dose dependent degeneration in prepubertal rat prostate gland. Prostate 73, 690–699 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Ramzan, F., Khan, M. A. & Ramzan, M. H. The effect of chronic kisspeptin administration on seminal fructose levels in male mice. Endocrine 45, 144–147 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Rajfer, J., Swerdloff, R. S. & Heber, D. M. Testicular histology following chronic gonadotropin-releasing hormone agonist treatment. Fertil. Steril. 42, 765–771 (1984).

    Article  CAS  PubMed  Google Scholar 

  100. Smith, J. A. & Urry, R. L. Testicular histology after prolonged treatment with a gonadotropin-releasing hormone analogue. J. Urol. 133, 612–614 (1985).

    Article  PubMed  Google Scholar 

  101. Mayerhofer, A. & Dubé, D. Chronic administration of a gonadotropin-releasing hormone (GnRH) agonist affects testicular microvasculature. Acta Endocrinol. (Copenh.) 120, 75–80 (1989).

    Article  CAS  Google Scholar 

  102. León, M. D., Chiauzzi, V. A., Calvo, J. C., Charreau, E. H. & Chemes, H. E. Acute hCG administration induces seminiferous tubule damage in the adult rat. Acta Physiol. Pharmacol. Latinoam. 37, 277–288 (1987).

    PubMed  Google Scholar 

  103. Kerr, J. B. & Sharpe, R. M. Focal disruption of spermatogenesis in the testis of adult rats after a single administration of human chorionic gonadotrophin. Cell Tissue Res. 257, 163–169 (1989).

    Article  CAS  PubMed  Google Scholar 

  104. Karaman, I. M. et al. The effects of human chorionic gonadotrophin on normal testicular tissue of rats: dose-dependence and reversibility. BJU Int. 97, 1116–1118 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Ramzan, F., Qureshi, I. Z., Khan, M. A. & Iqbal, M. J. Pretreatment with GnRH antagonist causes partial restoration of testicular tissue after Kisspeptin-10 induced degeneration in prepubertal rats. Pak. J. Zool. 45, 817–832 (2013).

    CAS  Google Scholar 

  106. Shahed, A. & Young, K. A. Differential ovarian expression of KiSS-1 and GPR-54 during the estrous cycle and photoperiod induced recrudescence in Siberian hamsters (Phodopus sungorus). Mol. Reprod. Dev. 76, 444–452 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Peng, J. et al. Kisspeptin stimulates progesterone secretion via the Erk1/2 mitogen-activated protein kinase signaling pathway in rat luteal cells. Fertil. Steril. 99, 1436–1443. e1 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. Ricu, M. A., Ramirez, V. D., Paredes, A. H. & Lara, H. E. Evidence for a celiac ganglion-ovarian kisspeptin neural network in the rat: intraovarian anti-kisspeptin delays vaginal opening and alters estrous cyclicity. Endocrinology 153, 4966–4977 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. Quennell, J. H. et al. Leptin deficiency and diet-induced obesity reduce hypothalamic kisspeptin expression in mice. Endocrinology 152, 1541–1550 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pasquali, R., Gambineri, A. & Pagotto, U. The impact of obesity on reproduction in women with polycystic ovary syndrome. BJOG 113, 1148–1159 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Lubrano, C., Gnessi, L. & Migliaccio, S. in Multidisciplinary Approach to Obesity (eds Lenzi, A. et al.) 73–82 (Springer International Publishing, 2015).

    Book  Google Scholar 

  112. Norman, J. E. The adverse effects of obesity on reproduction. Reproduction 140, 343–345 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Bhattacharya, M. & Babwah, A. V. Kisspeptin: beyond the brain. Endocrinology 156, 1218–1227 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Mead, E. J., Maguire, J. J., Kuc, R. E. & Davenport, A. P. Kisspeptins: a multifunctional peptide system with a role in reproduction, cancer and the cardiovascular system. Br. J. Pharmacol. 151, 1143–1153 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. MacLean, D. B., Matsui, H., Suri, A., Neuwirth, R. & Colombel, M. Sustained exposure to the investigational Kisspeptin analog, TAK-448, down-regulates testosterone into the castration range in healthy males and in patients with prostate cancer: results from two phase 1 studies. J. Clin. Endocrinol. Metab. 99, E1445–E1453 (2014).

    Article  CAS  PubMed  Google Scholar 

  116. Zhang, S., Yu, Y., Jiang, T., Lin, B. & Gao, H. Expression and significance of KiSS-1 and its receptor GPR54 mRNA in epithelial ovarian cancer. Zhonghua Fu Chan Ke Za Zhi 40, 689–692 (in Chinese) (2005).

    PubMed  Google Scholar 

  117. Cho, S.-G. et al. Kisspeptin-10, a KISS1-derived decapeptide, inhibits tumor angiogenesis by suppressing Sp1-mediated VEGF expression and FAK/Rho GTPase activation. Cancer Res. 69, 7062–7070 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kang, H. S. et al. GPR54 is a target for suppression of metastasis in endometrial cancer. Mol. Cancer Ther. 10, 580–590 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. Nash, K. T. et al. Requirement of KISS1 secretion for multiple organ metastasis suppression and maintenance of tumor dormancy. J. Natl Cancer Inst. 99, 309–321 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Chiang, A. C. & Massagué, J. Molecular basis of metastasis. N. Engl. J. Med. 359, 2814–2823 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Gao, G., Liu, L., Zou, X. & Chen, W. Expression of KiSS-1, matrix metalloproteinase-9, nuclear factor-kappaBp65 in ovarian tumour. Zhonghua Fu Chan Ke Za Zhi 42, 34–38 (in Chinese) (2007).

    CAS  PubMed  Google Scholar 

  122. Jiang, Y. et al. KiSS1 suppresses metastasis in human ovarian cancer via inhibition of protein kinase C alpha. Clin. Exp. Metastasis 22, 369–376 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Horikoshi, Y. et al. Dramatic elevation of plasma metastin concentrations in human pregnancy: metastin as a novel placenta-derived hormone in humans. J. Clin. Endocrinol. Metab. 88, 914–919 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Dhillo, W. S. et al. Plasma kisspeptin is raised in patients with gestational trophoblastic neoplasia and falls during treatment. Am. J. Physiol. Endocrinol. Metab. 291, E878–E884 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Nicolle, G., Comperat, E., Nicolaïew, N., Cancel-Tassin, G. & Cussenot, O. Metastin (KISS-1) and metastin-coupled receptor (GPR54) expression in transitional cell carcinoma of the bladder. Ann. Oncol. 18, 605–607 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Zajac, M. et al. GPR54 (KISS1R) transactivates EGFR to promote breast cancer cell invasiveness. PLoS ONE 6, e21599 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Cvetkovic, D., Babwah, A. V. & Bhattacharya, M. Kisspeptin/KISS1R system in breast cancer. J. Cancer 4, 653–661 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Steeg, P. S. Tumor metastasis: mechanistic insights and clinical challenges. Nat. Med. 12, 895–904 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Yoshioka, K. et al. Effects of a KiSS-1 peptide, a metastasis suppressor gene, on the invasive ability of renal cell carcinoma cells through a modulation of a matrix metalloproteinase 2 expression. Life Sci. 83, 332–338 (2008).

    Article  CAS  PubMed  Google Scholar 

  130. Thompson, E. L. et al. Central and peripheral administration of kisspeptin-10 stimulates the hypothalamic–pituitary–gonadal axis. J. Neuroendocrinol. 16, 850–858 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Dhillo, W. S. et al. Kisspeptin-54 stimulates gonadotropin release most potently during the preovulatory phase of the menstrual cycle in women. J. Clin. Endocrinol. Metab. 92, 3958–3966 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Jayasena, C. N. et al. The effects of kisspeptin-10 on reproductive hormone release show sexual dimorphism in humans. J. Clin. Endocrinol. Metab. 96, E1963–E1972 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Jayasena, C. N. et al. Increasing LH pulsatility in women with hypothalamic amenorrhoea using intravenous infusion of Kisspeptin-54. J. Clin. Endocrinol. Metab. 99, E953–E961 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Jayasena, C. N. et al. Subcutaneous injection of kisspeptin-54 acutely stimulates gonadotropin secretion in women with hypothalamic amenorrhea, but chronic administration causes tachyphylaxis. J. Clin. Endocrinol. Metab. 94, 4315–4323 (2009).

    Article  CAS  PubMed  Google Scholar 

  135. Jayasena, C. N. et al. Twice-weekly administration of kisspeptin-54 for 8 weeks stimulates release of reproductive hormones in women with hypothalamic amenorrhea. Clin. Pharmacol. Ther. 88, 840–847 (2010).

    Article  CAS  PubMed  Google Scholar 

  136. Chan, Y.-M., Butler, J. P., Sidhoum, V. F., Pinnell, N. E. & Seminara, S. B. Kisspeptin administration to women: a window into endogenous kisspeptin secretion and GnRH responsiveness across the menstrual cycle. J. Clin. Endocrinol. Metab. 97, E1458–E1467 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Chan, Y.-M. et al. Kisspeptin resets the hypothalamic GnRH clock in men. J. Clin. Endocrinol. Metab. 96, E908–E915 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. George, J. T., Veldhuis, J. D., Tena-Sempere, M., Millar, R. P. & Anderson, R. A. Exploring the pathophysiology of hypogonadism in men with type 2 diabetes: kisspeptin-10 stimulates serum testosterone and LH secretion in men with type 2 diabetes and mild biochemical hypogonadism. Clin. Endocrinol. (Oxf.) 79, 100–104 (2013).

    Article  CAS  Google Scholar 

  139. Sanchez-Carbayo, M., Capodieci, P. & Cordon-Cardo, C. Tumor suppressor role of KiSS-1 in bladder cancer: loss of KiSS-1 expression is associated with bladder cancer progression and clinical outcome. Am. J. Pathol. 162, 609–617 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Janneau, J.-L. et al. Transcriptional expression of genes involved in cell invasion and migration by normal and tumoral trophoblast cells. J. Clin. Endocrinol. Metab. 87, 5336–5339 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

F.W. is a Georg Forster Postdoctoral fellow of the Alexander von Humboldt Foundation, Germany. Funding for research work in R.B.'s laboratory is provided by the German Primate Center, which is a Leibniz Institute financed by the federal states and the Federal Republic of Germany. Research work in M.S.'s laboratory is supported by Higher Education Commission of Pakistan. The authors are thankful to Dr Stephanie Seminara, Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 0211, USA, for her comments on an earlier form of manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazal Wahab.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wahab, F., Atika, B., Shahab, M. et al. Kisspeptin signalling in the physiology and pathophysiology of the urogenital system. Nat Rev Urol 13, 21–32 (2016). https://doi.org/10.1038/nrurol.2015.277

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2015.277

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing