Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Understanding and targeting the Rho kinase pathway in erectile dysfunction

Key Points

  • RhoA–ROCK signalling is important for erectile homeostasis, and acts by potentiating Ca2+-dependent contraction to maintain penile flaccidity

  • Dysregulation of the RhoA–ROCK pathway has an important role in the aetiology of erectile dysfunction

  • RhoA–ROCK inhibition improves erectile dysfunction, even for hard-to-treat causes, such as diabetes

  • Several RhoA–ROCK inhibitors are being investigated in clinical trials and could provide new treatment options

Abstract

Erectile dysfunction (ED) is a common disorder that affects a quarter of US men, and has many causes, including endothelial impairment, low testosterone levels, prior surgical manipulation, and/or psychogenic components. Penile erection is a complex process requiring neurally mediated relaxation of arteriolar smooth muscle and engorgement of cavernosal tissues, mediated by nitric oxide (NO). Current medical therapies for ED largely seek to maximize endogenous NO signalling. Certain aetiologies, including diabetes, are difficult to treat with current modalities, emphasizing the need for new molecular targets. Research has demonstrated the importance of RhoA–Rho-associated protein kinase (ROCK) signalling in maintaining a flaccid penile state, and inhibition of RhoA–ROCK signalling potentiates smooth-muscle relaxation in an NO-independent manner. The mechanisms and effects of RhoA–ROCK signalling and inhibition suggest that the RhoA–ROCK pathway could prove to be a new therapeutic target for the treatment of ED.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathways of contraction and relaxation in cavernosal smooth-muscle cells.

Similar content being viewed by others

References

  1. Foster, S. A., Annunziata, K., Shortridge, E. F., Freedman, D. & Viktrup, L. Erectile dysfunction with or without coexisting benign prostatic hyperplasia in the general US population: analysis of US National Health and Wellness Survey. Curr. Med. Res. Opin. http://dx.doi.org/10.1185/03007995.2013.837385.

  2. Dean, R. C. & Lue, T. F. Physiology of penile erection and pathophysiology of erectile dysfunction. Urol. Clin. North Am. 32, 379–395 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Feldman, H. A., Goldstein, I., Hatzichristou, D. G., Krane, R. J. & McKinlay, J. B. Impotence and its medical and psychosocial correlates: results of the Massachusetts Male Aging Study. J. Urol. 151, 54–61 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Yao, F. et al. Erectile dysfunction may be the first clinical sign of insulin resistance and endothelial dysfunction in young men. Clin. Res. Cardiol. 102, 645–651 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Behr-Roussel, D. et al. Erectile dysfunction: an early marker for hypertension? A longitudinal study in spontaneously hypertensive rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288, R276–R283 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Akingba, A. G. & Burnett, A. L. Endothelial nitric oxide synthase protein expression, localization, and activity in the penis of the alloxan-induced diabetic rat. Mol. Urol. 5, 189–197 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Ignarro, L. J. et al. Nitric oxide and cyclic GMP formation upon electrical field stimulation cause relaxation of corpus cavernosum smooth muscle. Biochem. Biophys. Res. Commun. 170, 843–850 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Burnett, A. L. et al. Immunohistochemical localization of nitric oxide synthase in the autonomic innervation of the human penis. J. Urol. 150, 73–76 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Bivalacqua, T. J., Usta, M. F., Champion, H. C., Kadowitz, P. J. & Hellstrom, W. J. Endothelial dysfunction in erectile dysfunction: role of the endothelium in erectile physiology and disease. J. Androl. 24, S17–S37 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Chitaley, K. & Webb, R. C. Nitric oxide induces dilation of rat aorta via inhibition of rho-kinase signaling. Hypertension 39, 438–442 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Lin, C.-S., Xin, Z.-C., Wang, Z., Lin, G. & Lue, T. F. Molecular Yin and Yang of erectile function and dysfunction. Asian J. Androl. 10, 433–440 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kamm, K. E. & Stull, J. T. The function of myosin and myosin light chain kinase phosphorylation in smooth muscle. Annu. Rev. Pharmacol. Toxicol. 25, 593–620 (1985).

    Article  CAS  PubMed  Google Scholar 

  13. Reilly, C. M., Lewis, R. W., Stopper, V. S. & Mills, T. M. Androgenic maintenance of the rat erectile response via a non-nitric-oxide-dependent pathway. J. Androl. 18, 588–594 (1997).

    CAS  PubMed  Google Scholar 

  14. Ming, X.-F. et al. Rho GTPase/Rho kinase negatively regulates endothelial nitric oxide synthase phosphorylation through the inhibition of protein kinase B/Akt in human endothelial cells. Mol. Cell. Biol. 22, 8467–8477 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Küthe, A. et al. Expression of different phosphodiesterase genes in human cavernous smooth muscle. J. Urol. 165, 280–283 (2001).

    Article  PubMed  Google Scholar 

  16. DeFeo, T. T. & Morgan, K. G. Calcium-force relationships as detected with aequorin in two different vascular smooth muscles of the ferret. J. Physiol. 369, 269–282 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kimura, K. et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273, 245–248 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Rembold, C. M. Regulation of contraction and relaxation in arterial smooth muscle. Hypertension 20, 129–137 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Sasaki, T., Kato, M. & Takai, Y. Consequences of weak interaction of rho GDI with the GTP-bound forms of rho p21 and rac p21. J. Biol. Chem. 268, 23959–23963 (1993).

    CAS  PubMed  Google Scholar 

  20. Narumiya, S. The small GTPase Rho: cellular functions and signal transduction. J. Biochem. 120, 215–228 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Jin, L. & Burnett, A. L. RhoA/Rho-kinase in erectile tissue: mechanisms of disease and therapeutic insights. Clin. Sci. (Lond.) 110, 153–165 (2006).

    Article  CAS  Google Scholar 

  22. Amano, M., Fukata, Y. & Kaibuchi, K. Regulation and functions of Rho-associated kinase. Exp. Cell Res. 261, 44–51 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Bivalacqua, T. J. et al. Attenuated RhoA/Rho-kinase signaling in penis of transgenic sickle cell mice. Urology 76, 510.e7–510.e12 (2010).

    Article  Google Scholar 

  24. Hannan, J. L. et al. Inhibition of Rho-kinase improves erectile function, increases nitric oxide signaling and decreases penile apoptosis in a rat model of cavernous nerve injury. J. Urol. 189, 1155–1161 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Cho, S. Y., Park, K., Paick, J.-S. & Kim, S. W. Change of erectile function and responsiveness to phosphodiesterase type 5 inhibitors at different stages of streptozotocin-induced diabetes in rats. J. Sex. Med. 8, 1352–1361 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Vignozzi, L. et al. Testosterone regulates RhoA/Rho-kinase signaling in two distinct animal models of chemical diabetes. J. Sex. Med. 4, 620–630 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Chiou, W.-F., Liu, H.-K. & Juan, C.-W. Abnormal protein expression in the corpus cavernosum impairs erectile function in type 2 diabetes. BJU Int. 105, 674–680 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Breitenlechner, C. et al. Protein kinase A in complex with Rho-kinase inhibitors Y-27632, Fasudil, and H-1152P. Structure 11, 1595–1607 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Priviero, F. B., Jin, L.-M., Ying, Z., Teixeira, C. E. & Webb, R. C. Up-regulation of the RhoA/Rho-kinase signaling pathway in corpus cavernosum from endothelial nitric-oxide synthase (NOS), but not neuronal NOS, null mice. J. Pharmacol. Exp. Ther. 333, 184–192 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, H., Eto, M., Steers, W. D., Somlyo, A. P. & Somlyo, A. V. RhoA-mediated Ca2+ sensitization in erectile function. J. Biol. Chem. 277, 30614–30621 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Chitaley, K. et al. Antagonism of Rho-kinase stimulates rat penile erection via a nitric oxide-independent pathway. Nat. Med. 7, 119–122 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Uehata, M. et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389, 990–994 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Moody, J. A., Vernet, D., Laidlaw, S., Rajfer, J. & Gonzalez-Cadavid, N. F. Effects of long-term oral administration of L-arginine on the rat erectile response. J. Urol. 158, 942–947 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Sawada, N. et al. cGMP-dependent protein kinase phosphorylates and inactivates RhoA. Biochem. Biophys. Res. Commun. 280, 798–805 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Sauzeau, V. et al. Cyclic GMP-dependent protein kinase signaling pathway inhibits RhoA-induced Ca2+ sensitization of contraction in vascular smooth muscle. J. Biol. Chem. 275, 21722–21729 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Carter, R. W., Begaye, M. & Kanagy, N. L. Acute and chronic NOS inhibition enhances alpha(2)- adrenoreceptor-stimulated RhoA and Rho kinase in rat aorta. Am. J. Physiol. Heart Circ. Physiol. 283, H1361–H1369 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Sauzeau, V., Rolli-Derkinderen, M., Marionneau, C., Loirand, G. & Pacaud, P. RhoA expression is controlled by nitric oxide through cGMP-dependent protein kinase activation. J. Biol. Chem. 278, 9472–9480 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Sugimoto, M. et al. Rho-kinase phosphorylates eNOS at threonine 495 in endothelial cells. Biochem. Biophys. Res. Commun. 361, 462–467 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Mita, S., Kobayashi, N., Yoshida, K., Nakano, S. & Matsuoka, H. Cardioprotective mechanisms of Rho-kinase inhibition associated with eNOS and oxidative stress-LOX-1 pathway in Dahl salt-sensitive hypertensive rats. J. Hypertens. 23, 87–96 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Laufs, U. & Liao, J. K. Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GTPase. J. Biol. Chem. 273, 24266–24271 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Saito, M. et al. Hydroxyfasudil ameliorates penile dysfunction in the male spontaneously hypertensive rat. Pharmacol. Res. 66, 325–331 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Burchardt, M. et al. Hypertension is associated with severe erectile dysfunction. J. Urol. 164, 1188–1191 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Wilkes, N., White, S., Stein, P., Bernie, J. & Rajasekaran, M. Phosphodiesterase-5 inhibition synergizes rho-kinase antagonism and enhances erectile response in male hypertensive rats. Int. J. Impot. Res. 16, 187–194 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Chitaley, K., Webb, R. C., Dorrance, A. M. & Mills, T. M. Decreased penile erection in DOCA-salt and stroke prone-spontaneously hypertensive rats. Int. J. Impot. Res. 13 (Suppl. 5), S16–S20 (2001).

    Article  PubMed  Google Scholar 

  45. Lasker, G. F. et al. The selective Rho-kinase inhibitor azaindole-1 has long-lasting erectile activity in the rat. Urology 81, 465.e7–465.e14 (2013).

    Article  Google Scholar 

  46. Pankey, E. A. et al. The Rho kinase inhibitor azaindole-1 has long-acting vasodilator activity in the pulmonary vascular bed of the intact chest rat. Can. J. Physiol. Pharmacol. 90, 825–835 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Guagnini, F., Ferazzini, M., Grasso, M., Blanco, S. & Croci, T. Erectile properties of the Rho-kinase inhibitor SAR407899 in diabetic animals and human isolated corpora cavernosa. J. Transl. Med. 10, 59 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bivalacqua, T. J. et al. RhoA/Rho-kinase suppresses endothelial nitric oxide synthase in the penis: a mechanism for diabetes-associated erectile dysfunction. Proc. Natl Acad. Sci. USA 101, 9121–9126 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Bivalacqua, T. J., Hellstrom, W. J., Kadowitz, P. J. & Champion, H. C. Increased expression of arginase II in human diabetic corpus cavernosum: in diabetic-associated erectile dysfunction. Biochem. Biophys. Res. Commun. 283, 923–927 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Musicki, B. & Burnett, A. L. Endothelial dysfunction in diabetic erectile dysfunction. Int. J. Impot. Res. 19, 129–138 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Costa, C. et al. Increased endothelial apoptotic cell density in human diabetic erectile tissue—comparison with clinical data. J. Sex. Med. 6, 826–835 (2009).

    Article  PubMed  Google Scholar 

  52. Chang, J. et al. Activation of Rho-associated coiled-coil protein kinase 1 (ROCK-1) by caspase-3 cleavage plays an essential role in cardiac myocyte apoptosis. Proc. Natl Acad. Sci. USA 103, 14495–14500 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Li, W. J., Park, K., Paick, J.-S. & Kim, S. W. Chronic treatment with an oral rho-kinase inhibitor restores erectile function by suppressing corporal apoptosis in diabetic rats. J. Sex. Med. 8, 400–410 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Morelli, A. et al. Atorvastatin ameliorates sildenafil-induced penile erections in experimental diabetes by inhibiting diabetes-induced RhoA/Rho-kinase signaling hyperactivation. J. Sex. Med. 6, 91–106 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Toque, H. A. et al. Activated Rho kinase mediates diabetes-induced elevation of vascular arginase activation and contributes to impaired corpora cavernosa relaxation: possible involvement of p38 MAPK activation. J. Sex. Med. 10, 1502–1515 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sezen, S. F., Lagoda, G., Musicki, B. & Burnett, A. L. Hydroxyl Fasudil, an inhibitor of Rho signaling, improves erectile function in diabetic rats: a role for neuronal ROCK. J. Sex. Med. 11, 2164–2171 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Park, K., Kim, S. W., Rhu, K. S. & Paick, J.-S. Chronic administration of an oral Rho kinase inhibitor prevents the development of vasculogenic erectile dysfunction in a rat model. J. Sex. Med. 3, 996–1003 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Jin, L. et al. Elevated RhoA/Rho-kinase activity in the aged rat penis: mechanism for age-associated erectile dysfunction. FASEB J. 20, 536–538 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Johannes, C. B. et al. Incidence of erectile dysfunction in men 40 to 69 years old: longitudinal results from the Massachusetts male aging study. J. Urol. 163, 460–463 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Rajasekaran, M., White, S., Baquir, A. & Wilkes, N. Rho-kinase inhibition improves erectile function in aging male Brown-Norway rats. J. Androl. 26, 182–188 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Magheli, A. & Burnett, A. L. Erectile dysfunction following prostatectomy: prevention and treatment. Nat. Rev. Urol. 6, 415–427 (2009).

    Article  PubMed  Google Scholar 

  62. Hatzimouratidis, K. et al. Phosphodiesterase type 5 inhibitors in postprostatectomy erectile dysfunction: a critical analysis of the basic science rationale and clinical application. Eur. Urol. 55, 334–347 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Pavlovich, C. P. et al. Nightly vs on-demand sildenafil for penile rehabilitation after minimally invasive nerve-sparing radical prostatectomy: results of a randomized double-blind trial with placebo. BJU Int. 112, 844–851 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Gratzke, C. et al. Activated RhoA/Rho kinase impairs erectile function after cavernous nerve injury in rats. J. Urol. 184, 2197–2204 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Löhn, M. et al. Pharmacological characterization of SAR407899, a novel rho-kinase inhibitor. Hypertension 54, 676–683 (2009).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data for the article, discussion of content, writing the article and reviewing and editing the manuscript before submission.

Corresponding author

Correspondence to Nikolai A. Sopko.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sopko, N., Hannan, J. & Bivalacqua, T. Understanding and targeting the Rho kinase pathway in erectile dysfunction. Nat Rev Urol 11, 622–628 (2014). https://doi.org/10.1038/nrurol.2014.278

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2014.278

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing