Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

NUMB inhibition of NOTCH signalling as a therapeutic target in prostate cancer

Subjects

Key Points

  • NUMB is a complex protein with multiple cellular functions

  • NUMB negatively regulates the NOTCH signalling pathway

  • The NUMB–NOTCH interaction regulates cell fate in prostate tumours

  • Targeting NUMB has potential to control prostate tumorigenesis

  • NUMB profiling could assist the identification of patients with prostate cancer who are likely to benefit from NOTCH-inhibition strategies

Abstract

Prostate cancer is among the most prevalent life-threatening cancers diagnosed in the male population today. Various methods have been exploited in an attempt to treat this disease but these treatments, alongside preventative tactics, have been insufficient to control mortality rates and have usually resulted in detrimental adverse events. An opportunity to devise more-specific and potentially more-effective approaches for the eradication of prostate tumours can be found by targeting specific biological pathways. NUMB (protein numb homologue), a key regulator of cell fate, represents an attractive, actionable target in prostate cancer. NUMB participates in the observed deregulation of NOTCH (neurogenic locus notch homologue protein) signalling in prostate tumours, and the NUMB–NOTCH interaction regulates cell fate. NUMB has potential both as a target for control of prostate tumorigenesis and as a biomarker for identification of patients with prostate cancer who are likely to benefit from NOTCH inhibition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The multiple functions of NUMB.
Figure 2: Inhibition of the NOTCH pathway by NUMB.

Similar content being viewed by others

References

  1. Jemal, A. et al. Cancer statistics, 2007. CA Cancer J. Clin. 57, 43–66 (2007).

    Article  PubMed  Google Scholar 

  2. Obesity and Overweight, Fact Sheet No. 311. World Health Organisation [online], (2014).

  3. Allott, E. H., Masko, E. M. & Freedland, S. J. Obesity and prostate cancer: weighing the evidence. Eur. Urol. 63, 800–809 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Baumann, M., Krause, M., Thames, H., Trott, K. & Zips, D. Cancer stem cells and radiotherapy. Int. J. Radiat. Biol. 85, 391–402 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Kioi, M. et al. Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J. Clin. Invest. 120, 694–705 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Danza, G. et al. Notch signaling modulates hypoxia-induced neuroendocrine differentiation of human prostate cancer cells. Mol. Cancer Res. 10, 230–238 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Yu, S. D., Liu, F. Y. & Wang, Q. R. Notch inhibitor: a promising carcinoma radiosensitizer. Asian Pac. J. Cancer Prev. 13, 5345–5351 (2012).

    Article  PubMed  Google Scholar 

  8. Dho, S. E., French, M. B., Woods, S. A. & McGlade, C. J. Characterization of four mammalian numb protein isoforms. Identification of cytoplasmic and membrane-associated variants of the phosphotyrosine binding domain. J. Biol. Chem. 274, 33097–33104 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Kelsom, C. & Lu, W. Uncovering the link between malfunctions in Drosophila neuroblast asymmetric cell division and tumorigenesis. Cell Biosci. 2, 38 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rhyu, M. S., Jan, L. Y. & Jan, Y. N. Asymmetric distribution of numb protein during division of the sensory organ precursor cell confers distinct fates to daughter cells. Cell 76, 477–491 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Pece, S., Confalonieri, S., R. Romano, P. & Di Fiore, P. P. NUMB-ing down cancer by more than just a NOTCH. Biochim. Biophys. Acta 1815, 26–43 (2011).

    CAS  PubMed  Google Scholar 

  12. Chiba, S. Notch signaling in stem cell systems. Stem Cells 24, 2437–2447 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Artavanis-Tsakonas, S., Rand, M. D. & Lake, R. J. Notch signaling: cell fate control and signal integration in development. Science 284, 770–776 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Pece, S. et al. Loss of negative regulation by Numb over Notch is relevant to human breast carcinogenesis. J. Cell Biol. 167, 215–221 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Di Marcotullio, L. et al. Numb is a suppressor of Hedgehog signalling and targets Gli1 for Itch-dependent ubiquitination. Nat. Cell Biol. 8, 1415–1423 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Greer, R. L., Staley, B. K., Liou, A. & Hebrok, M. Numb regulates acinar cell dedifferentiation and survival during pancreatic damage and acinar-to-ductal metaplasia. Gastroenterology 145, 1088–1097 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Salcini, A. E. et al. Binding specificity and in vivo targets of the EH domain, a novel protein-protein interaction module. Genes Dev. 11, 2239–2249 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Verdi, J. M. et al. Mammalian NUMB is an evolutionarily conserved signaling adapter protein that specifies cell fate. Curr. Biol. 6, 1134–1145 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Dho, S. E., Trejo, J., Siderovski, D. P. & McGlade, C. J. Dynamic regulation of mammalian numb by G protein-coupled receptors and protein kinase C activation: Structural determinants of numb association with the cortical membrane. Mol. Biol. Cell 17, 4142–4155 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Karaczyn, A. et al. Two novel human NUMB isoforms provide a potential link between development and cancer. Neural Dev. 5, 31 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Reichardt, I. & Knoblich, J. A. Cell biology: Notch recycling is numbed. Curr. Biol. 23, R270–R272 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Zhou, Y. & Abagyan, R. How and why phosphotyrosine-containing peptides bind to the SH2 and PTB domains. Fold. Des. 3, 513–522 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Gulino, A., Di Marcotullio, L. & Screpanti, I. The multiple functions of Numb. Exp. Cell Res. 316, 900–906 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Ravichandran, K. S. et al. Evidence for a requirement for both phospholipid and phosphotyrosine binding via the Shc phosphotyrosine-binding domain in vivo. Mol. Cell. Biol. 17, 5540–5549 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Giebel, B. & Wodarz, A. Notch signaling: numb makes the difference. Curr. Biol. 22, R133–R135 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Carter, S. & Vousden, K. H. A role for Numb in p53 stabilization. Genome Biol. 9, 221 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Colaluca, I. N. et al. NUMB controls p53 tumour suppressor activity. Nature 451, 76–80 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Dhami, G. K. et al. Dynamic methylation of Numb by Set8 regulates its binding to p53 and apoptosis. Mol. Cell 50, 565–576 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Cappello, F. et al. The value of immunohistochemical research on PCNA, p53 and heat shock proteins in prostate cancer management: a review. Eur. J. Histochem. 50, 25–34 (2006).

    CAS  PubMed  Google Scholar 

  31. Couturier, L., Mazouni, K. & Schweisguth, F. Numb localizes at endosomes and controls the endosomal sorting of notch after asymmetric division in Drosophila. Curr. Biol. 23, 588–593 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Jiang, J. & Hui, C. C. Hedgehog signaling in development and cancer. Dev. Cell 15, 801–812 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Karhadkar, S. S. et al. Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 431, 707–712 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Axelson, M. et al. U. S. Food and Drug Administration approval: vismodegib for recurrent, locally advanced, or metastatic basal cell carcinoma. Clin. Cancer Res. 19, 2289–2293 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Drenkhahn, S. K., Jackson, G. A., Slusarz, A., Starkey, N. J. & Lubahn, D. B. Inhibition of hedgehog/Gli signaling by botanicals: a review of compounds with potential hedgehog pathway inhibitory activities. Curr. Cancer Drug Targets 13, 580–595 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Sandhiya, S., Melvin, G., Kumar, S. S. & Dkhar, S. A. The dawn of hedgehog inhibitors: Vismodegib. J. Pharmacol. Pharmacother. 4, 4–7 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Di Marcotullio, L. et al. Multiple ubiquitin-dependent processing pathways regulate hedgehog/gli signaling: implications for cell development and tumorigenesis. Cell Cycle 6, 390–393 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Nanta, R. et al. NVP-LDE-225 (Erismodegib) inhibits epithelial-mesenchymal transition and human prostate cancer stem cell growth in NOD/SCID IL2Rgamma null mice by regulating Bmi-1 and microRNA-128. Oncogenesis 2, e42 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Di Marcotullio, L. et al. Numb activates the E3 ligase Itch to control Gli1 function through a novel degradation signal. Oncogene 30, 65–76 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Chen, M., Carkner, R. & Buttyan, R. The hedgehog/Gli signaling paradigm in prostate cancer. Expert Rev. Endocrinol. Metab. 6, 453–467 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sirab, N. et al. Androgens regulate Hedgehog signalling and proliferation in androgen-dependent prostate cells. Int. J. Cancer 131, 1297–1306 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Nadendla, S. K. et al. GLI1 confers profound phenotypic changes upon LNCaP prostate cancer cells that include the acquisition of a hormone independent state. PLoS ONE 6, e20271 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen, G. et al. GLI1, a crucial mediator of sonic hedgehog signaling in prostate cancer, functions as a negative modulator for androgen receptor. Biochem. Biophys. Res. Commun. 404, 809–815 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Chen, M. et al. Androgenic regulation of hedgehog signaling pathway components in prostate cancer cells. Cell Cycle 8, 149–157 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Kawahara, H. et al. Neural RNA-binding protein Musashi1 inhibits translation initiation by competing with eIF4G for PABP. J. Cell Biol. 181, 639–653 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Imai, T. et al. The neural RNA-binding protein Musashi1 translationally regulates mammalian numb gene expression by interacting with its mRNA. Mol. Cell. Biol. 21, 3888–3900 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Toda, M. et al. Expression of the neural RNA-binding protein Musashi1 in human gliomas. Glia 34, 1–7 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Nie, J. et al. LNX functions as a RING type E3 ubiquitin ligase that targets the cell fate determinant Numb for ubiquitin-dependent degradation. EMBO J. 21, 93–102 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Susini, L. et al. Siah-1 binds and regulates the function of Numb. Proc. Natl Acad. Sci. USA 98, 15067–15072 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kuang, W. et al. Cyclic stretch induced miR-146a upregulation delays C2C12 myogenic differentiation through inhibition of Numb. Biochem. Biophys. Res. Commun. 378, 259–263 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Xu, B. et al. A functional polymorphism in Pre-miR-146a gene is associated with prostate cancer risk and mature miR-146a expression in vivo. Prostate 70, 467–472 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Xu, B. et al. MiR-146a suppresses tumor growth and progression by targeting EGFR pathway and in a p-ERK-dependent manner in castration-resistant prostate cancer. Prostate 72, 1171–1178 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Lin, S. L., Chiang, A., Chang, D. & Ying, S. Y. Loss of mir-146a function in hormone-refractory prostate cancer. RNA 14, 417–424 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Groth, C. & Fortini, M. E. Therapeutic approaches to modulating Notch signaling: current challenges and future prospects. Semin. Cell Dev. Biol. 23, 465–472 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Leong, K. G. & Karsan, A. Recent insights into the role of Notch signaling in tumorigenesis. Blood 107, 2223–2233 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Espinoza, I. & Miele, L. Notch inhibitors for cancer treatment. Pharmacol. Ther. 139, 95–110 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Marignol, L., Rivera-Figueroa, K., Lynch, T. & Hollywood, D. Hypoxia, notch signalling, and prostate cancer. Nat. Rev. Urol. 10, 405–413 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nam, Y., Weng, A. P., Aster, J. C. & Blacklow, S. C. Structural requirements for assembly of the CSL.intracellular Notch1.Mastermind-like 1 transcriptional activation complex. J. Biol. Chem. 278, 21232–21239 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Barth, J. M. & Kohler, K. How to take autophagy and endocytosis up a notch. Biomed. Res. Int. 2014, 960803 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Yamamoto, S., Charng, W. L. & Bellen, H. J. Endocytosis and intracellular trafficking of Notch and its ligands. Curr. Top. Dev. Biol. 92, 165–200 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lai, E. C. Notch signaling: control of cell communication and cell fate. Development 131, 965–973 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. McGill, M. A., Dho, S. E., Weinmaster, G. & McGlade, C. J. Numb regulates post-endocytic trafficking and degradation of Notch1. J. Biol. Chem. 284, 26427–26438 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Brou, C. Intracellular trafficking of Notch receptors and ligands. Exp. Cell Res. 315, 1549–1555 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Schweisguth, F. Regulation of notch signaling activity. Curr. Biol. 14, R129–R138 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Brou, C. et al. A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE. Mol. Cell 5, 207–216 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Wilkin, M. B. & Baron, M. Endocytic regulation of Notch activation and down-regulation (review). Mol. Membr. Biol. 22, 279–289 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Kidd, S., Lieber, T. & Young, M. W. Ligand-induced cleavage and regulation of nuclear entry of Notch in Drosophila melanogaster embryos. Genes Dev. 12, 3728–3740 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Schroeter, E. H., Kisslinger, J. A. & Kopan, R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393, 382–386 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Lieber, T., Kidd, S. & Young, M. W. Kuzbanian-mediated cleavage of Drosophila Notch. Genes Dev. 16, 209–221 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mumm, J. S. et al. A ligand-induced extracellular cleavage regulates gamma-secretase-like proteolytic activation of Notch1. Mol. Cell 5, 197–206 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Iso, T., Kedes, L. & Hamamori, Y. HES and HERP families: multiple effectors of the Notch signaling pathway. J. Cell. Physiol. 194, 237–255 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Davis, R. L. & Turner, D. L. Vertebrate hairy and Enhancer of split related proteins: transcriptional repressors regulating cellular differentiation and embryonic patterning. Oncogene 20, 8342–8357 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Leong, K. G. & Gao, W. Q. The Notch pathway in prostate development and cancer. Differentiation 76, 699–716 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Wang, X. D. et al. Notch signaling is required for normal prostatic epithelial cell proliferation and differentiation. Dev. Biol. 290, 66–80 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Villaronga, M. A., Bevan, C. L. & Belandia, B. Notch signaling: a potential therapeutic target in prostate cancer. Curr. Cancer Drug Targets 8, 566–580 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Kong, D. et al. Epigenetic silencing of miR-34a in human prostate cancer cells and tumor tissue specimens can be reversed by BR-DIM treatment. Am. J. Transl. Res. 4, 14–23 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Domingo-Domenech, J. et al. Suppression of acquired docetaxel resistance in prostate cancer through depletion of notch- and hedgehog-dependent tumor-initiating cells. Cancer Cell 22, 373–388 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sharad, S. et al. Prostate cancer gene expression signature of patients with high body mass index. Prostate Cancer Prostatic Dis. 14, 22–29 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Anderson, L. M. & Gibbons, G. H. Notch: a mastermind of vascular morphogenesis. J. Clin. Invest. 117, 299–302 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gridley, T. Notch signaling in vascular development and physiology. Development 134, 2709–2718 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Pallares, J. et al. Study of microvessel density and the expression of the angiogenic factors VEGF, bFGF and the receptors Flt-1 and FLK-1 in benign, premalignant and malignant prostate tissues. Histol. Histopathol. 21, 857–865 (2006).

    CAS  PubMed  Google Scholar 

  82. Bostwick, D. G. & Iczkowski, K. A. Microvessel density in prostate cancer: prognostic and therapeutic utility. Semin. Urol. Oncol. 16, 118–123 (1998).

    CAS  PubMed  Google Scholar 

  83. Gordon, W. R. et al. Structural basis for autoinhibition of Notch. Nat. Struct. Mol. Biol. 14, 295–300 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Kopan, R. & Ilagan, M. X. Gamma-secretase: proteasome of the membrane? Nat. Rev. Mol. Cell Biol. 5, 499–504 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Pitsouli, C. & Delidakis, C. The interplay between DSL proteins and ubiquitin ligases in Notch signaling. Development 132, 4041–4050 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Okajima, T. & Irvine, K. D. Regulation of notch signaling by o-linked fucose. Cell 111, 893–904 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Nickoloff, B. J. et al. Jagged-1 mediated activation of notch signaling induces complete maturation of human keratinocytes through NF-kappaB and PPARgamma. Cell Death Differ. 9, 842–855 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Varnum-Finney, B. et al. Immobilization of Notch ligand, Delta-1, is required for induction of notch signaling. J. Cell Sci. 113, 4313–4318 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Small, D. et al. Soluble Jagged 1 represses the function of its transmembrane form to induce the formation of the Src-dependent chord-like phenotype. J. Biol. Chem. 276, 32022–32030 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Aste-Amézaga, M. et al. Characterization of Notch1 antibodies that inhibit signaling of both normal and mutated Notch1 receptors. PLoS ONE 5, e9094 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Li, K. et al. Modulation of Notch signaling by antibodies specific for the extracellular negative regulatory region of NOTCH3. J. Biol. Chem. 283, 8046–8054 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Ridgway, J. et al. Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature 444, 1083–1087 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Aster, J. C., Pear, W. S. & Blacklow, S. C. Notch signaling in leukemia. Annu. Rev. Pathol. 3, 587–613 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Andersson, E. R., Sandberg, R. & Lendahl, U. Notch signaling: simplicity in design, versatility in function. Development 138, 3593–3612 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Tremblay, I., Paré, E., Arsenault, D., Douziech, M. & Boucher, M. J. The MEK/ERK pathway promotes NOTCH signalling in pancreatic cancer cells. PLoS ONE 8, e85502 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Redmond, L., Oh, S. R., Hicks, C., Weinmaster, G. & Ghosh, A. Nuclear Notch1 signaling and the regulation of dendritic development. Nat. Neurosci. 3, 30–40 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Shimizu, K. et al. Binding of Delta1, Jagged1, and Jagged2 to Notch2 rapidly induces cleavage, nuclear translocation, and hyperphosphorylation of Notch2. Mol. Cell. Biol. 20, 6913–6922 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Foltz, D. R. & Nye, J. S. Hyperphosphorylation and association with RBP of the intracellular domain of Notch1. Biochem. Biophys. Res. Commun. 286, 484–492 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Foltz, D. R., Santiago, M. C., Berechid, B. E. & Nye, J. S. Glycogen synthase kinase-3beta modulates notch signaling and stability. Curr. Biol. 12, 1006–1011 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Inglés-Esteve, J., Espinosa, L., Milner, L. A., Caelles, C. & Bigas, A. Phosphorylation of Ser2078 modulates the Notch2 function in 32D cell differentiation. J. Biol. Chem. 276, 44873–44880 (2001).

    Article  PubMed  Google Scholar 

  101. Ronchini, C. & Capobianco, A. J. Notch(ic)-ER chimeras display hormone-dependent transformation, nuclear accumulation, phosphorylation and CBF1 activation. Oncogene 19, 3914–3924 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Gupta-Rossi, N. et al. Monoubiquitination and endocytosis direct gamma-secretase cleavage of activated Notch receptor. J. Cell Biol. 166, 73–83 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Nichols, J. T., Miyamoto, A. & Weinmaster, G. Notch signaling—constantly on the move. Traffic 8, 959–969 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Qiu, L. et al. Recognition and ubiquitination of Notch by Itch, a hect-type E3 ubiquitin ligase. J. Biol. Chem. 275, 35734–35737 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Cornell, M. et al. The Drosophila melanogaster Suppressor of deltex gene, a regulator of the Notch receptor signaling pathway, is an E3 class ubiquitin ligase. Genetics 152, 567–576 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Fostier, M., Evans, D. A., Artavanis-Tsakonas, S. & Baron, M. Genetic characterization of the Drosophila melanogaster Suppressor of deltex gene: A regulator of notch signaling. Genetics 150, 1477–1485 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Matsuno, K. et al. Human deltex is a conserved regulator of Notch signalling. Nat. Genet. 19, 74–78 (1998).

    Article  CAS  PubMed  Google Scholar 

  108. Yong, T., Sun, A., Henry, M. D., Meyers, S. & Davis, J. N. Down regulation of CSL activity inhibits cell proliferation in prostate and breast cancer cells. J. Cell. Biochem. 112, 2340–2351 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Sakata, T. et al. Drosophila Nedd4 regulates endocytosis of notch and suppresses its ligand-independent activation. Curr. Biol. 14, 2228–2236 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Jehn, B. M., Dittert, I., Beyer, S., von der Mark, K. & Bielke, W. c-Cbl binding and ubiquitin-dependent lysosomal degradation of membrane-associated Notch1. J. Biol. Chem. 277, 8033–8040 (2002).

    Article  CAS  PubMed  Google Scholar 

  111. Levkowitz, G. et al. c-Cbl/Sli-1 regulates endocytic sorting and ubiquitination of the epidermal growth factor receptor. Genes Dev. 12, 3663–3674 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Oberg, C. et al. The Notch intracellular domain is ubiquitinated and negatively regulated by the mammalian Sel-10 homolog. J. Biol. Chem. 276, 35847–35853 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Fryer, C. J., White, J. B. & Jones, K. A. Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol. Cell 16, 509–520 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Mukherjee, A. et al. Regulation of Notch signalling by non-visual beta-arrestin. Nat. Cell Biol. 7, 1191–1201 (2005).

    Article  PubMed  Google Scholar 

  115. Gustafsson, M. V. et al. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev. Cell 9, 617–628 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Zheng, X. et al. Interaction with factor inhibiting HIF-1 defines an additional mode of cross-coupling between the Notch and hypoxia signaling pathways. Proc. Natl Acad. Sci. USA 105, 3368–3373 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Coleman, M. L. et al. Asparaginyl hydroxylation of the Notch ankyrin repeat domain by factor inhibiting hypoxia-inducible factor. J. Biol. Chem. 282, 24027–24038 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Zhang, N. et al. The asparaginyl hydroxylase factor inhibiting HIF-1alpha is an essential regulator of metabolism. Cell Metab. 11, 364–378 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Okajima, T., Xu, A. & Irvine, K. D. Modulation of notch-ligand binding by protein O-fucosyltransferase 1 and fringe. J. Biol. Chem. 278, 42340–42345 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Shimizu, K. et al. Manic fringe and lunatic fringe modify different sites of the Notch2 extracellular region, resulting in different signaling modulation. J. Biol. Chem. 276, 25753–25758 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Panin, V. M., Papayannopoulos, V., Wilson, R. & Irvine, K. D. Fringe modulates Notch-ligand interactions. Nature 387, 908–912 (1997).

    Article  CAS  PubMed  Google Scholar 

  122. Moloney, D. J. et al. Fringe is a glycosyltransferase that modifies Notch. Nature 406, 369–375 (2000).

    Article  CAS  PubMed  Google Scholar 

  123. Popko-Scibor, A. E., Lindberg, M. J., Hansson, M. L., Holmlund, T. & Wallberg, A. E. Ubiquitination of Notch1 is regulated by MAML1-mediated p300 acetylation of Notch1. Biochem. Biophys. Res. Commun. 416, 300–306 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Palermo, R. et al. Acetylation controls Notch3 stability and function in T-cell leukemia. Oncogene 31, 3807–3817 (2012).

    Article  CAS  PubMed  Google Scholar 

  125. Guarani, V. et al. Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase. Nature 473, 234–238 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kim, M. Y. et al. Tip60 histone acetyltransferase acts as a negative regulator of Notch1 signaling by means of acetylation. Mol. Cell. Biol. 27, 6506–6519 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Nam, Y., Sliz, P., Pear, W. S., Aster, J. C. & Blacklow, S. C. Cooperative assembly of higher-order Notch complexes functions as a switch to induce transcription. Proc. Natl Acad. Sci. USA 104, 2103–2108 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Jung, J. et al. Regulation of Notch1 signaling by Delta-like ligand 1 intracellular domain through physical interaction. Mol. Cells 32, 161–165 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wang, Z. et al. Down-regulation of Notch-1 is associated with Akt and FoxM1 in inducing cell growth inhibition and apoptosis in prostate cancer cells. J. Cell. Biochem. 112, 78–88 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kallifatidis, G. et al. Sulforaphane increases drug-mediated cytotoxicity toward cancer stem-like cells of pancreas and prostate. Mol. Ther. 19, 188–195 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Cecchinato, V. et al. Resveratrol-induced apoptosis in human T-cell acute lymphoblastic leukaemia MOLT-4 cells. Biochem. Pharmacol. 74, 1568–1574 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Wang, Z., Zhang, Y., Banerjee, S., Li, Y. & Sarkar, F. H. Notch-1 down-regulation by curcumin is associated with the inhibition of cell growth and the induction of apoptosis in pancreatic cancer cells. Cancer 106, 2503–2513 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Santolini, E. et al. Numb is an endocytic protein. J. Cell Biol. 151, 1345–1352 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lieber, T., Kidd, S., Alcamo, E., Corbin, V. & Young, M. W. Antineurogenic phenotypes induced by truncated Notch proteins indicate a role in signal transduction and may point to a novel function for Notch in nuclei. Genes Dev. 7, 1949–1965 (1993).

    Article  CAS  PubMed  Google Scholar 

  135. Rebay, I., Fehon, R. G. & Artavanis-Tsakonas, S. Specific truncations of Drosophila Notch define dominant activated and dominant negative forms of the receptor. Cell 74, 319–329 (1993).

    Article  CAS  PubMed  Google Scholar 

  136. Couturier, L., Mazouni, K. & Schweisguth, F. Inhibition of Notch recycling by Numb: relevance and mechanism(s). Cell Cycle 12, 1647–1648 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Caussinus, E. & Hirth, F. Asymmetric stem cell division in development and cancer. Prog. Mol. Subcell. Biol. 45, 205–225 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Lerner, R. G. & Petritsch, C. A microRNA-operated switch of asymmetric-to-symmetric cancer stem cell divisions. Nat. Cell Biol. 16, 212–214 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lai, E. C. Keeping a good pathway down: transcriptional repression of Notch pathway target genes by CSL proteins. EMBO Rep. 3, 840–845 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Baron, M. et al. Multiple levels of Notch signal regulation (review). Mol. Membr. Biol. 19, 27–38 (2002).

    Article  CAS  PubMed  Google Scholar 

  141. Capobianco, A. J., Zagouras, P., Blaumueller, C. M., Artavanis-Tsakonas, S. & Bishop, J. M. Neoplastic transformation by truncated alleles of human NOTCH1/TAN1 and NOTCH2. Mol. Cell. Biol. 17, 6265–6273 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Jarriault, S. et al. Signalling downstream of activated mammalian Notch. Nature 377, 355–358 (1995).

    Article  CAS  PubMed  Google Scholar 

  143. Frise, E., Knoblich, J. A., Younger-Shepherd, S., Jan, L. Y. & Jan, Y. N. The Drosophila Numb protein inhibits signaling of the Notch receptor during cell-cell interaction in sensory organ lineage. Proc. Natl Acad. Sci. USA 93, 11925–11932 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Gho, M., Lecourtois, M., Géraud, G., Posakony, J. W. & Schweisguth, F. Subcellular localization of Suppressor of Hairless in Drosophila sense organ cells during Notch signalling. Development 122, 1673–1682 (1996).

    Article  CAS  PubMed  Google Scholar 

  145. Berdnik, D., Török, T., González-Gaitán, M. & Knoblich, J. A. The endocytic protein alpha-Adaptin is required for numb-mediated asymmetric cell division in Drosophila. Dev. Cell 3, 221–231 (2002).

    Article  CAS  PubMed  Google Scholar 

  146. McGill, M. A. & McGlade, C. J. Mammalian numb proteins promote Notch1 receptor ubiquitination and degradation of the Notch1 intracellular domain. J. Biol. Chem. 278, 23196–23203 (2003).

    Article  CAS  PubMed  Google Scholar 

  147. Kang, Y. et al. Overexpression of Numb suppresses tumor cell growth and enhances sensitivity to cisplatin in epithelioid malignant pleural mesothelioma. Oncol. Rep. 30, 313–319 (2013).

    Article  CAS  PubMed  Google Scholar 

  148. Zhang, C. C. et al. Synergistic effect of the gamma-secretase inhibitor PF-03084014 and docetaxel in breast cancer models. Stem Cells Transl. Med. 2, 233–242 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Misquitta-Ali, C. M. et al. Global profiling and molecular characterization of alternative splicing events misregulated in lung cancer. Mol. Cell. Biol. 31, 138–150 (2011).

    Article  CAS  PubMed  Google Scholar 

  150. Rennstam, K. et al. Numb protein expression correlates with a basal-like phenotype and cancer stem cell markers in primary breast cancer. Breast Cancer Res. Treat. 122, 315–324 (2010).

    Article  CAS  PubMed  Google Scholar 

  151. Maiorano, E. et al. Prognostic implications of NUMB immunoreactivity in salivary gland carcinomas. Int. J. Immunopathol. Pharmacol. 20, 779–789 (2007).

    Article  CAS  PubMed  Google Scholar 

  152. Le Borgne, R., Bardin, A. & Schweisguth, F. The roles of receptor and ligand endocytosis in regulating Notch signaling. Development 132, 1751–1762 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge support from the Irish Cancer Society (grant code PCA12MAR). Victoria Anastasia Belle is a Mount Sinai International Exchange Program minority student participant. Her work was supported in part by grant MD001452 from the National Center on Minority Health and Health Disparities of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

V.A.B. and L.M. researched the data for the article, discussed the content and wrote the article. All authors contributed to review and editing of the manuscript before submission.

Corresponding author

Correspondence to Laure Marignol.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belle, V., McDermott, N., Meunier, A. et al. NUMB inhibition of NOTCH signalling as a therapeutic target in prostate cancer. Nat Rev Urol 11, 499–507 (2014). https://doi.org/10.1038/nrurol.2014.195

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2014.195

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing