Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Robot-assisted laparoscopic urological surgery in children

Abstract

Robot-assisted laparoscopic surgery (RALS) has been proven to be safe and effective for various urological procedures in children, including pyeloplasty, orchiopexy, nephrectomy, and bladder augmentation. The robot system enables delicate and precise movements, which are ideal for the types of reconstructive surgeries that children with urological issues often require, overcoming many of the impediments associated with the conventional laparoscopic approach. RALS helps the relative novice to perform fine surgical techniques and is thought to reduce the learning curve associated with some surgical techniques, such as intracorporeal suturing, owing to the improved freedom of movement of the surgical instruments, the ergonomic positioning of the surgeon, and the 3D vision provided by the robotic system. Given the favourable safety profile and associated benefits of the robot system, including reductions in mean postoperative hospital stay compared with conventional procedures, RALS is becoming more widely adopted by paediatric urologists.

Key Points

  • Robot-assisted laparoscopic surgery (RALS) is safe and effective in the surgical management of various paediatric urological conditions

  • The advantages of RALS include shorter hospitalization times, quicker recovery, and ease of surgery; the disadvantages include longer operative time and increased material cost

  • Special anaesthesia considerations—for example, CO2 absorption and the effect of the pneumoperitoneum on ventilation—should be made when performing RALS in young or small children

  • Modifications to robotic positioning and port placement should be considered when performing RALS in the paediatric population owing to limitations in body surface area and intra-abdominal space

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Robot-assisted laparoscopic right pyeloplasty was performed in a 15-year-old boy with a ureteropelvic junction obstruction.
Figure 2: Robot-assisted laparoscopic bilateral extravesical ureteral reimplantation was performed in a 6-year-old girl with bilateral grade 4 vesicoureteral reflux.
Figure 3: Robot-assisted laparoscopic bilateral intravesical ureteral reimplantation was performed in a 10-year-old girl with bilateral grade 4–5 vesicoureteral reflux.
Figure 4: Robot-assisted laparoscopic upper to lower pole ureteroureterostomy was performed in a 7-year-old girl with an ectopic left upper pole ureter and an associated functional renal moiety.
Figure 5: Robot-assisted laparoscopic left upper pole heminephrectomy was performed in a 4-year-old girl with a left ectopic obstructed upper pole ureter and an associated nonfunctioning renal moiety.
Figure 6: Robot-assisted laparoscopic creation of a continent catheterizable conduit (Mitrofanoff) was performed in a 10-year-old boy with a neurogenic bladder secondary to myelomeningocele.

Similar content being viewed by others

References

  1. Lee, R. S., Retik, A. B., Borer, J. G. & Peters, C. A. Paediatric robot assisted laparoscopic dismembered pyeloplasty: comparison with a cohort of open surgery. J. Urol. 175, 683–687 (2006).

    Article  PubMed  Google Scholar 

  2. Barbosa, J. A. B. A. et al. Patient and parent perceptions of robotic compared to open surgical scars in paediatric urologic surgery. J. Urol. http://dx.doi.org/10.1016/j.juro.2012.12.060.

  3. Gobet, R. in Paediatric robotic and reconstructive urology: a comprehensive guide (ed. Gundeti, M. S.) 120 (Wiley-Blackwell, West Sussex, 2012).

    Book  Google Scholar 

  4. Minnillo, B. J. et al. Long-term experience and outcomes of robotic assisted laparoscopic pyeloplasty in children and young adults. J. Urol. 185, 1455–1460 (2011).

    Article  PubMed  Google Scholar 

  5. Sorensen, M. D., Delostrinos, C., Johnson, M. H., Grady, R. W. & Lendvay, T. S. Comparison of the learning curve and outcomes of robotic assisted paediatric pyeloplasty. J. Urol. 185, 2517–2522 (2011).

    Article  PubMed  Google Scholar 

  6. Freilich, D. A. et al. Parental satisfaction after open versus robot assisted laparoscopic pyeloplasty: results from modified Glasgow Children's Benefit Inventory Survey. J. Urol. 183, 704–708 (2010).

    Article  PubMed  Google Scholar 

  7. Lee, R. S. et al. Early results of robot assisted laparoscopic lithotomy in adolescents. J. Urol. 177, 2306–2310 (2007).

    Article  PubMed  Google Scholar 

  8. Casale, P., Muchsavage, P., Resnick, M. & Kim, S. S. Robotic ureterocalicostomy in the paediatric population. J. Urol. 180, 2643–2648 (2008).

    Article  PubMed  Google Scholar 

  9. Badalato, G. M., Haemal, A. K., Menon, M. & Badani, K. K. Current role of robot-assisted pyelolithotomy for the management of large renal calculi: a contemporary analysis. J. Endourol. 23, 1719–1722 (2009).

    Article  PubMed  Google Scholar 

  10. Elder, J. S. Guidelines for consideration for surgical repair of vesicoureteral reflux. Curr. Opin. Urol. 10, 579 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Jodal, U. et al. Ten-year results of randomized treatment of children with severe vesicoureteral reflux. Final report of the International Reflux Study in Children. Paediatr. Nephrol. 21, 785 (2006).

    Article  Google Scholar 

  12. Ehrlich, R. M., Gershman, A. & Fuchs, G. Laparoscopic vesicoureteroplasty in children: initial case reports. Urology 43, 255–261 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Marchini, L. et al. Robotic assisted laparoscopic ureteral reimplantation in children: case matched comparative study with open surgical approach. J. Urol. 185, 1870–1875 (2011).

    Article  PubMed  Google Scholar 

  14. Casale, P., Patel, R. P. & Kolon, T. F. Nerve sparing extravesical ureteral reimplantation. J. Urol. 179, 1987–1990 (2008).

    Article  PubMed  Google Scholar 

  15. Lendvay, T. Robotic-assisted laparoscopic management of vesicoureteral reflux. Adv. Urol. 732, 942 (2008).

    Google Scholar 

  16. Smith, R. P., Oliver, J. L. & Peters, C. A., Paediatric robotic extravesical ureteral reimplantation: comparison with open surgery. J. Urol. 185, 1876–1881 (2011).

    Article  PubMed  Google Scholar 

  17. Gill, I. S., Ponsky, L. E., Desai, M., Kay, R. & Ross, J. H. Laparoscopic cross-trigonal Cohen ureteroneocystostomy: novel technique. J. Urol. 166, 1811–1814 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Thakre, A. A. & Yeung, C. K. Techinique of intravesical laparoscopy for ureteric reimplantation to treat VUR. Adv. Urol. 937, 231 (2008).

    Google Scholar 

  19. Kutikov, A. et al. Laparoscopic and robotic complex upper-tract reconstruction in children with a duplex collecting system. J. Endourol. 21, 621–624 (2007).

    Article  PubMed  Google Scholar 

  20. Lee, R. S., Sethi, A. S., Passerotti, A. C. & Peters, C. A. Robot-assisted laparoscopic nephrectomy and contralateral ureteral reimplantation in children. J. Endourol. 24, 123–128 (2010).

    Article  PubMed  Google Scholar 

  21. Anderberg, M., Kockum, C. C. & Arnbjornsson, E. Paediatric computer-assisted retroperitoneoscopic nephrectomy compared with open surgery. Paediatr. Surg. Int. 27, 761–767 (2011).

    Article  Google Scholar 

  22. Oslen, L. H. & Jorgensen, T. M. Robotically assisted retroperitoneoscopic hemi-nephrectomy in children: initial clinical results. J. Paediatr. Urol. 1, 101–104 (2005).

    Article  Google Scholar 

  23. Lee, R. S., Sethi, A. S. & Passerotti, C. C. Robot assisted laparoscopic partial nephrectomy: a viable and safe option in children. J. Urol. 181, 823–828 (2009).

    Article  PubMed  Google Scholar 

  24. Nguyen, H. T., Passerotti, C. C., Penna, F. J., Retik, A. B. & Peters, C. A. Robotic assisted laparoscopic Mitrofanoff appendicovesicostomy: preliminary experience in a paediatric population. J. Urol. 182, 1528–1534 (2009).

    Article  PubMed  Google Scholar 

  25. Thakre, A. A., Yeung, C. K. & Peters, C. Robot-assisted Mitrofanoff and Malone antegrade continence enema reconstruction using divided appendix. J. Endourol. 22, 2393–2396 (2008).

    Article  PubMed  Google Scholar 

  26. Famakinwa, O. & Gundeti, M. S. Robotic assisted laparoscopic Mitrofanoff appendicovesicostomy (RALMA). Curr. Urol. Rep. 14, 41–45 (2013).

    Article  PubMed  Google Scholar 

  27. Passerotti, C. C. et al. Robot-assisted laparoscopic ileal bladder augmentation: defining techniques and potential pitfalls. J. Endourol. 22, 355–360 (2008).

    Article  PubMed  Google Scholar 

  28. Gundeti, M. S., Acharya, S. S., Zagaja, G. P. & Shalhav, A. L. Paediatric robotic-assisted laparoscopic augmentation ileocystoplasty and Mitrofanoff appendicovesicostomy (RALIMA): feasibility of and initial experience with the University of Chicago technique. BJU Int. 107, 962–969 (2011).

    Article  PubMed  Google Scholar 

  29. Law, G. S., Pérez, L. M. & Joseph, D. B. Two-stage Fowler-Stephens orchiopexy with laparoscopic clipping of the spermatic vessels. J. Urol. 158, 1205–1207 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Volfson, I. A. et al. Robot-assisted urologic surgery: safety and feasibility in the paediatric population. J. Endourol. 21, 1315–1318 (2007).

    Article  PubMed  Google Scholar 

  31. Kutikov, A. et al. Incidence of benign pathologic findings at partial nephrectomy for solitary renal mass presumed to be renal cell carcinoma on preoperative imaging. Urology 68, 737–740 (2006).

    Article  PubMed  Google Scholar 

  32. Tomaszewski, J. J., Casella, D. P., Turner, R. M., Casale, P. & Ost, M. C. Paediatric laparoscopic and robot-assisted laparoscopic surgery: technical considerations. J. Urol. 26, 602–613 (2012).

    Google Scholar 

  33. Joris, J. L. et al. Haemodynamic changes during laparoscopic cholecystectomy. Anesth. Analg. 76, 1067–1071 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Halachmi, S. et al. Haemodynamic and respiratory effect of paediatric urological laparoscopic surgery: A retrospective study. J. Urol. 170, 1651–1654 (2003).

    Article  PubMed  Google Scholar 

  35. Rawashdeh, Y. F., Olsen, L. H. & Jorgensen, T. M. in Paediatric Robotic Urology. (ed. Palmer, J. S.) 24 (Humana Press, Cleveland, 2009).

    Google Scholar 

  36. Colodny, A. H. Laparoscopy in paediatric urology: too much of a good thing? Semin. Paediatr. Surg. 5, 23–29 (1996).

    CAS  Google Scholar 

  37. Moore, R. G., Kavoussi, L. R. & Bloom, D. A. Postoperative adhesion formation after urological laparoscopy in the paediatric population. J. Urol. 153, 792–795 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Penna, F. J. & Elder, J. S. in Paediatric robotic and reconstructive urology: a comprehensive guide (ed. Gundeti, M. S.) 32 (Wiley-Blackwell, West Sussex, 2012).

    Google Scholar 

  39. Chiu, A. et al. Effects of intra-abdominal pressure on renal tissue perfusion during laparoscopy. J. Endourol. 8, 99–103 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. McDougall, E. et al. The effect of prolonged pneumoperitoneum on renal function in an animal model. J. Am. Coll. Surg. 182, 317–328 (1996).

    CAS  PubMed  Google Scholar 

  41. Abassi, Z. et al. Adverse effects of pneumoperitoneum on renal function: involvement of the endothelin and nitric oxide systems. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R842–R850 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Uzzo, R. G., Bilsky, M., Mininberg, D. T. & Poppas, D. P. Laparoscopic surgery in children with ventriculoperitoneal shunts: Effect of pneumoperitoneum on intracranial pressure—preliminary experience. Urology 49, 753–757 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Marchetti, P., Razmaria, A., Zagaja, G. P. & Gundeti, M. S. Management of the ventriculo-peritoneal shunt in paediatric patients during robot-assisted laparoscopic urologic procedures. J. Endourol. 25, 2225–2229 (2011).

    Article  Google Scholar 

  44. Fraser, J. D. et al. The safety of laparoscopy in paediatric patients with ventriculoperitoneal shunts. J. Laparoendoscop. Advan. Surg. Techniques 19, 676–678 (2009).

    Google Scholar 

  45. Chen, C. et al. Malfunction of the da Vinci robotic system in urology. Int. J. Urol. 19, 736–740 (2012).

    Article  PubMed  Google Scholar 

  46. Zorn, K. C. et al. Da Vinci robot error and failure rates: single institution experience on a single three-arm robot unit of more than 700 consecutive robot-assisted laparoscopic radical prostatectomies. J. Endourol. 21, 1341–1344 (2007).

    Article  PubMed  Google Scholar 

  47. Lavery, H. J. et al. Robotic equipment malfunction during robotic prostatectomy: a multi-institutional study. J. Endourol. 22, 2165–2168 (2008).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

L. F. Sávio researched the literature for this Review. Both authors contributed towards writing the article. H. T. Nguyen discussed the content with colleagues and reviewed the article prior to submission.

Corresponding author

Correspondence to Hiep T. Nguyen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sávio, L., Nguyen, H. Robot-assisted laparoscopic urological surgery in children. Nat Rev Urol 10, 632–639 (2013). https://doi.org/10.1038/nrurol.2013.220

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2013.220

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing