Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging tools for erectile dysfunction: a role for regenerative medicine

Abstract

Erectile dysfunction (ED) is the most common sexual disorder reported by men to their health-care providers and the most investigated male sexual dysfunction. Currently, the treatment of ED focuses on 'symptomatic relief' of ED and, therefore, tends to provide temporary relief rather than providing a cure or reversing the cause. The identification of a large population of “difficult-to-treat” patients has triggered researchers to identify novel treatment approaches, which focus on cure and restoration of the underlying cause of ED. Regenerative medicine has developed extensively in the past few decades and preclinical trials have emphasized the benefit of growth factor therapy, gene transfer, stem cells and tissue engineering for the restoration of erectile function. Development of clinical trials involving immunomodulation in postprostatectomy ED patients and the use of maxi-K channels for gene therapy are illustrative of the advances in the field. However, the search for novel treatment targets and a wealth of preclinical studies represent a dynamic and continuing field of enquiry.

Key Points

  • Erectile dysfunction is the most commonly reported sexual disorder in men

  • A large subpopulation of men with ED are unresponsive to available oral pharmacotherapy (PDE5 inhibitors), owing to a loss of NO signalling and changes in penile tissue composition

  • Unresponsive patients might benefit from regenerative medicine options that restore tissue integrity and signalling in penis-projecting neurons, penile smooth muscle cells and endothelial cells

  • According to the degree of ED and tissue damage, regenerative medicine for ED includes tissue-protective pharmacotherapy, gene therapy, (stem) cell-based therapies or whole tissue replacement using bioengineered tissues

  • Aside from one clinical trial, these studies so far remain in the preclinical phase; however, current research is aiming to translate various regenerative treatments to clinical trials

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Future strategy for the role of regenerative medicine in the management of ED.
Figure 2: Main targets for gene transfer in the future treatment of ED.

Similar content being viewed by others

References

  1. NIH Consensus Conference. Impotence. NIH Consensus Development Panel on Impotence. JAMA 270, 83–90 (1993).

  2. Uckert, S., Mayer, M. E., Stief, C. G. & Jonas, U. The future of the oral pharmacotherapy of male erectile dysfunction: things to come. Expert Opin. Emerg. Drugs 12, 219–228 (2007).

    Article  PubMed  Google Scholar 

  3. Derogatis, L. R. & Burnett, A. L. The epidemiology of sexual dysfunctions. J. Sex. Med. 5, 289–300 (2008).

    Article  PubMed  Google Scholar 

  4. Saigal, C. S., Wessells, H., Pace, J., Schonlau, M. & Wilt, T. J. Predictors and prevalence of erectile dysfunction in a racially diverse population. Arch. Intern. Med. 166, 207–212 (2006).

    Article  PubMed  Google Scholar 

  5. Kim, N., Azadzoi, K. M., Goldstein, I. & Saenz de Tejada, I. A nitric oxide-like factor mediates nonadrenergic-noncholinergic neurogenic relaxation of penile corpus cavernosum smooth muscle. J. Clin. Invest. 88, 112–118 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sáenz de Tejada, I. Molecular mechanisms for the regulation of penile smooth muscle contractility. Int. J. Impot. Res. 14 (Suppl. 1), S6–S10 (2002).

    Article  PubMed  Google Scholar 

  7. Lue, T. F. Erectile dysfunction. N. Engl. J. Med. 342, 1802–1813 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Albersen, M., Shindel, A. W., Mwamukonda, K. B. & Lue, T. F. The future is today: emerging drugs for the treatment of erectile dysfunction. Expert Opin. Emerg. Drugs 15, 467–480 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hatzimouratidis, K. & Hatzichristou, D. Phosphodiesterase type 5 inhibitors: the day after. Eur. Urol. 51, 75–89 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Xie, D., Annex, B. H. & Donatucci, C. F. Growth factors for therapeutic angiogenesis in hypercholesterolemic erectile dysfunction. Asian J. Androl. 10, 23–27 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Lin, C.-S. & Lue, T. F. Growth factor therapy and neuronal nitric oxide synthase. Int. J. Impot. Res. 16 (Suppl. 1), S38–S39 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Bella, A. J., Lin, G., Cagiannos, I. & Lue, T. F. Emerging neuromodulatory molecules for the treatment of neurogenic erectile dysfunction caused by cavernous nerve injury. Asian J. Androl. 10, 54–59 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Bella, A. J. et al. Nerve growth factor modulation of the cavernous nerve response to injury. J. Sex. Med. 6 (Suppl. 3), 347–352 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lin, G. et al. Neurotrophic effects of brain-derived neurotrophic factor and vascular endothelial growth factor in major pelvic ganglia of young and aged rats. BJU Int. 105, 114–120 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Bella, A. J. et al. Neurturin enhances the recovery of erectile function following bilateral cavernous nerve crush injury in the rat. J. Brachial Plex. Peripher. Nerve Inj. 2, 5 (2007).

    PubMed  PubMed Central  Google Scholar 

  16. Fandel, T. M. et al. Intracavernous growth differentiation factor-5 therapy enhances the recovery of erectile function in a rat model of cavernous nerve injury. J. Sex. Med. 5, 1866–1875 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Jung, G. W., Kwak, J. Y., Yoon, S., Yoon, J. H. & Lue, T. F. IGF-I and TGF-beta2 have a key role on regeneration of nitric oxide synthase (NOS)-containing nerves after cavernous neurotomy in rats. Int. J. Impot. Res. 11, 247–259 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Jung, G. W. et al. The role of growth factor on regeneration of nitric oxide synthase (NOS)-containing nerves after cavernous neurotomy in the rats. Int. J. Impot. Res. 11, 227–235 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Allaf, M. E., Hoke, A. & Burnett, A. L. Erythropoietin promotes the recovery of erectile function following cavernous nerve injury. J. Urol. 174, 2060–2064 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Albersen, M., Joniau, S., Claes, H. & Van Poppel, H. Preclinical evidence for the benefits of penile rehabilitation therapy following nerve-sparing radical prostatectomy. Adv. Urol. 594868 (2008).

  21. Calenda, G. et al. Whole genome microarray of the major pelvic ganglion after cavernous nerve injury: new insights into molecular profile changes after nerve injury. BJU Int. 109, 1552–1564 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Bella, A. J. et al. Upregulation of penile brain-derived neurotrophic factor (BDNF) and activation of the JAK/STAT signalling pathway in the major pelvic ganglion of the rat after cavernous nerve transection. Eur. Urol. 52, 574–580 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Bond, C., Tang, Y. & Podlasek, C. A. Neural influences on sonic hedgehog and apoptosis in the rat penis. Biol. Reprod. 78, 947–956 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Bond, C. W. et al. Peptide amphiphile nanofiber delivery of sonic hedgehog protein to reduce smooth muscle apoptosis in the penis after cavernous nerve resection. J. Sex. Med. 8, 78–89 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Jin, H.-R. et al. Intracavernous delivery of synthetic angiopoietin-1 protein as a novel therapeutic strategy for erectile dysfunction in the type II diabetic db/db mouse. J. Sex. Med. 7, 3635–3646 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Jung, G. W., Spencer, E. M. & Lue, T. F. Growth hormone enhances regeneration of nitric oxide synthase-containing penile nerves after cavernous nerve neurotomy in rats. J. Urol. 160, 1899–1904 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Abdelbaky, T. M., Brock, G. B. & Huynh, H. Improvement of erectile function in diabetic rats by insulin: possible role of the insulin-like growth factor system. Endocrinology 139, 3143–3147 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Shirai, M. et al. Vascular endothelial growth factor restores erectile function through modulation of the insulin-like growth factor system and sex hormone receptors in diabetic rat. Biochem. Biophys. Res. Commun. 341, 755–762 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Pu, X.-Y. et al. Insulin-like growth factor-1 restores erectile function in aged rats: modulation the integrity of smooth muscle and nitric oxide-cyclic guanosine monophosphate signaling activity. J. Sex. Med. 5, 1345–1354 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, H.-Y., Jin, X.-B. & Lue, T. F. Three important components in the regeneration of the cavernous nerve: brain-derived neurotrophic factor, vascular endothelial growth factor and the JAK/STAT signaling pathway. Asian J. Androl. 13, 231–235 (2011).

    Article  PubMed  Google Scholar 

  31. Hsieh, P.-S. et al. The effect of vascular endothelial growth factor and brain-derived neurotrophic factor on cavernosal nerve regeneration in a nerve-crush rat model. BJU Int. 92, 470–475 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Bella, A. J. et al. Brain-derived neurotrophic factor (BDNF) acts primarily via the JAK/STAT pathway to promote neurite growth in the major pelvic ganglion of the rat: part I. J. Sex. Med. 3, 815–820 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Lin, G., Bella, A. J., Lue, T. F. & Lin, C.-S. Brain-derived neurotrophic factor (BDNF) acts primarily via the JAK/STAT pathway to promote neurite growth in the major pelvic ganglion of the rat: part 2. J. Sex. Med. 3, 821–829 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Albersen, M. et al. Pentoxifylline promotes recovery of erectile function in a rat model of postprostatectomy erectile dysfunction. Eur. Urol. 59, 286–296 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Yamashita, S. et al. Inhibition of interleukin-6 attenuates erectile dysfunction in a rat model of nerve-sparing radical prostatectomy. J. Sex. Med. 8, 1957–1964 (2011).

    Article  PubMed  Google Scholar 

  36. Lagoda, G., Sezen, S. F. & Burnett, A. L. FK506 and rapamycin neuroprotect erection and involve different immunophilins in a rat model of cavernous nerve injury. J. Sex. Med. 6, 1914–1923 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Hayashi, N. et al. The effect of FK1706 on erectile function following bilateral cavernous nerve crush injury in a rat model. J. Urol. 176, 824–829 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Valentine, H. et al. Neuroimmunophilin ligands protect cavernous nerves after crush injury in the rat: new experimental paradigms. Eur. Urol. 51, 1724–1731 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Sezen, S. F., Hoke, A., Burnett, A. L. & Snyder, S. H. Immunophilin ligand FK506 is neuroprotective for penile innervation. Nat. Med. 7, 1073–1074 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. US National Library of Medicine. ClinicalTrials.gov [online], (2010).

  41. US National Library of Medicine. ClinicalTrials.gov [online], (2008).

  42. Burnett, A. L. Erectile dysfunction management for the future. J. Androl. 30, 391–396 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Hatzimouratidis, K. Editorial comment on: Smooth-muscle-specific gene transfer with the human maxi-K channel improves erectile function and enhances sexual behavior in atherosclerotic cynomolgus monkeys. Eur. Urol. 56, 1066 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Garbán, H. et al. Cloning of rat and human inducible penile nitric oxide synthase. Application for gene therapy of erectile dysfunction. Biol. Reprod. 56, 954–963 (1997).

    Article  PubMed  Google Scholar 

  45. Melman, A., Bar-Chama, N., McCullough, A., Davies, K. & Christ, G. The first human trial for gene transfer therapy for the treatment of erectile dysfunction: preliminary results. Eur. Urol. 48, 314–318 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Melman, A., Bar-Chama, N., McCullough, A., Davies, K. & Christ, G. hMaxi-K gene transfer in males with erectile dysfunction: results of the first human trial. Hum. Gene Ther. 17, 1165–1176 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Harraz, A., Shindel, A. W. & Lue, T. F. Emerging gene and stem cell therapies for the treatment of erectile dysfunction. Nat. Rev. Urol. 7, 143–152 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bivalacqua, T. J., Burnett, A. L., Hellstrom, W. J. G. & Champion, H. C. Overexpression of arginase in the aged mouse penis impairs erectile function and decreases eNOS activity: influence of in vivo gene therapy of anti-arginase. Am. J. Physiol. Heart Circ. Physiol. 292, H1340–H1351 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Bivalacqua, T. J., Hellstrom, W. J., Kadowitz, P. J. & Champion, H. C. Increased expression of arginase II in human diabetic corpus cavernosum: in diabetic-associated erectile dysfunction. Biochem. Biophys. Res. Commun. 283, 923–927 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Bivalacqua, T. J. et al. Adenoviral gene transfer of endothelial nitric oxide synthase (eNOS) to the penis improves age-related erectile dysfunction in the rat. Int. J. Impot. Res. 12 (Suppl. 3), S8–S17 (2000).

    Article  PubMed  Google Scholar 

  51. Albersen, M. et al. Injections of adipose tissue-derived stem cells and stem cell lysate improve recovery of erectile function in a rat model of cavernous nerve injury. J. Sex. Med. 7, 3331–3340 (2010).

    Article  PubMed  Google Scholar 

  52. Yoshimura, N., Kato, R., Chancellor, M. B., Nelson, J. B. & Glorioso, J. C. Gene therapy as future treatment of erectile dysfunction. Expert Opin. Biol. Ther. 10, 1305–1314 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Magee, T. R. et al. Gene therapy of erectile dysfunction in the rat with penile neuronal nitric oxide synthase. Biol. Reprod. 67, 1033–1041 (2002).

    Article  PubMed  Google Scholar 

  54. Bivalacqua, T. J. et al. Mesenchymal stem cells alone or ex vivo gene modified with endothelial nitric oxide synthase reverse age-associated erectile dysfunction. Am. J. Physiol. Heart Circ. Physiol. 292, H1278–H1290 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Chancellor, M. B. et al. Nitric oxide synthase gene transfer for erectile dysfunction in a rat model. BJU Int. 91, 691–696 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Tirney, S. et al. Nitric oxide synthase gene therapy for erectile dysfunction: comparison of plasmid, adenovirus, and adenovirus-transduced myoblast vectors. Mol. Urol. 5, 37–43 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Magee, T. R. et al. Protein inhibitor of nitric oxide synthase (NOS) and the N-methyl-D-aspartate receptor are expressed in the rat and mouse penile nerves and colocalize with penile neuronal NOS 1. Biol. Reprod. 488, 478–488 (2003).

    Article  CAS  Google Scholar 

  58. Magee, T. R. et al. Antisense and short hairpin RNA (shRNA) constructs targeting PIN (protein inhibitor of NOS) ameliorate aging-related erectile dysfunction in the rat. J. Sex. Med. 4, 633–643 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Bivalacqua, T. J. et al. Dysregulation of cGMP-dependent protein kinase 1 (PKG-1) impairs erectile function in diabetic rats: influence of in vivo gene therapy of PKG1alpha. BJU Int. 99, 1488–1494 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Chang, S. et al. Downregulation of cGMP-dependent protein kinase-1 activity in the corpus cavernosum smooth muscle of diabetic rabbits. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R950–R960 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Das, A., Smolenski, A., Lohmann, S. M. & Kukreja, R. C. Cyclic GMP-dependent protein kinase Ialpha attenuates necrosis and apoptosis following ischemia/reoxygenation in adult cardiomyocyte. J. Biol. Chem. 281, 38644–38652 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Bakircioglu, M. E. et al. The effect of adeno-associated virus mediated brain derived neurotrophic factor in an animal model of neurogenic impotence. J. Urol. 165, 2103–2109 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Gholami, S. S. et al. The effect of vascular endothelial growth factor and adeno-associated virus mediated brain derived neurotrophic factor on neurogenic and vasculogenic erectile dysfunction induced by hyperlipidemia. J. Urol. 169, 1577–1581 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Kato, R. et al. Herpes simplex virus vector-mediated delivery of neurturin rescues erectile dysfunction of cavernous nerve injury. Gene Ther. 16, 26–33 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Kato, R. et al. Herpes simplex virus vector-mediated delivery of glial cell line-derived neurotrophic factor rescues erectile dysfunction following cavernous nerve injury. Gene Ther. 14, 1344–1352 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Bennett, N. E. et al. Improvement in erectile dysfunction after neurotrophic factor gene therapy in diabetic rats. J. Urol. 173, 1820–1824 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Bochinski, D. et al. Effect of insulin-like growth factor-1 and insulin-like growth factor binding protein-3 complex in cavernous nerve cryoablation. Int. J. Impot. Res. 16, 418–423 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Gerber, H. P., Dixit, V. & Ferrara, N. Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J. Biol. Chem. 273, 13313–13316 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Ferrara, N. Molecular and biological properties of vascular endothelial growth factor. J. Mol. Med. (Berl). 77, 527–543 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Lin, G. et al. Neurotrophic effects of vascular endothelial growth factor and neurotrophins on cultured major pelvic ganglia. BJU Int. 92, 631–635 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Dall'Era, J. E. et al. Vascular endothelial growth factor (VEGF) gene therapy using a nonviral gene delivery system improves erectile function in a diabetic rat model. Int. J. Impot. Res. 20, 307–314 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Rogers, R. S., Graziottin, T. M., Lin, C.-S., Kan, Y. W. & Lue, T. F. Intracavernosal vascular endothelial growth factor (VEGF) injection and adeno-associated virus-mediated VEGF gene therapy prevent and reverse venogenic erectile dysfunction in rats. Int. J. Impot. Res. 15, 26–37 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Ryu, J.-K. et al. Combined angiopoietin-1 and vascular endothelial growth factor gene transfer restores cavernous angiogenesis and erectile function in a rat model of hypercholesterolemia. Mol. Ther. 13, 705–715 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Qiu, X. et al. Combined strategy of mesenchymal stem cell injection with vascular endothelial growth factor gene therapy for the treatment of diabetes-associated erectile dysfunction. J. Androl. 33, 37–44 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Ryu, J.-K. et al. Gene therapy with an erythropoietin enhancer-mediated hypoxia-inducible gene expression system in the corpus cavernosum of mice with high-cholesterol diet-induced erectile dysfunction. J. Androl. doi:10.2164/jandrol.111.016014.

  76. Selvaraju, V. et al. Diabetes, oxidative stress, molecular mechanism, and cardiovascular disease - an overview. Toxicol. Mech. Methods 22, 330–335 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Bivalacqua, T. J. et al. Superoxide anion production in the rat penis impairs erectile function in diabetes: influence of in vivo extracellular superoxide dismutase gene therapy. J. Sex. Med. 2, 187–198 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Jin, L. et al. Elevated RhoA/Rho-kinase activity in the aged rat penis: mechanism for age-associated erectile dysfunction. FASEB J. 20, 536–538 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Gratzke, C. et al. Activated RhoA/Rho kinase impairs erectile function after cavernous nerve injury in rats. J. Urol. 184, 2197–2204 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Coleman, M. L. et al. Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat. Cell Biol. 3, 339–345 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Bivalacqua, T. J. et al. RhoA/Rho-kinase suppresses endothelial nitric oxide synthase in the penis: a mechanism for diabetes-associated erectile dysfunction. Proc. Natl Acad. Sci. USA 101, 9121–9126 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chitaley, K. et al. Adeno-associated viral gene transfer of dominant negative RhoA enhances erectile function in rats. Biochem. Biophys. Res. Commun. 298, 427–432 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Shen, Z.-J. et al. Gene transfer of vasoactive intestinal polypeptide into the penis improves erectile response in the diabetic rat. BJU Int. 95, 890–894 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Bivalacqua, T. J., Champion, H. C., Abdel-Mageed, A. B., Kadowitz, P. J. & Hellstrom, W. J. Gene transfer of prepro-calcitonin gene-related peptide restores erectile function in the aged rat. Biol. Reprod. 65, 1371–1377 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Kendirci, M., Teloken, P. E., Champion, H. C., Hellstrom, W. J. G. & Bivalacqua, T. J. Gene therapy for erectile dysfunction: fact or fiction? Eur. Urol. 50, 1208–1222 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Christ, G. J. et al. Intracorporal injection of hSlo cDNA restores erectile capacity in STZ-diabetic F-344 rats in vivo. Am. J. Physiol. Heart Circ. Physiol. 287, H1544–H1553 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Christ, G. J., Spray, D. C. & Brink, P. R. Characterization of K currents in cultured human corporal smooth muscle cells. J. Androl. 14, 319–328.

  88. Christ, G. J. et al. Intracorporal injection of hSlo cDNA in rats produces physiologically relevant alterations in penile function. Am. J. Physiol. 275, H600–H608 (1998).

    CAS  PubMed  Google Scholar 

  89. Melman, A., Zhao, W., Davies, K. P., Bakal, R. & Christ, G. J. The successful long-term treatment of age related erectile dysfunction with hSlo cDNA in rats in vivo. J. Urol. 170, 285–290 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Melman, A. et al. Gene transfer with a vector expressing Maxi-K from a smooth muscle-specific promoter restores erectile function in the aging rat. Gene Ther. 15, 364–370 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Christ, G. J. et al. Editorial comment on: Smooth-muscle-specific gene transfer with the human maxi-K channel improves erectile function and enhances sexual behavior in atherosclerotic cynomolgus monkeys. Eur. Urol. 56, 1066 (2009).

    Article  CAS  Google Scholar 

  92. Melman, A. & Davies, K. P. Gene therapy in the management of erectile dysfunction (ED): past, present, and future. ScientificWorldJournal 9, 846–854 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Albersen, M. et al. Multipotent stromal cell therapy for cavernous nerve injury-induced erectile dysfunction. J. Sex. Med. 9, 385–403 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Bochinski, D. et al. The effect of neural embryonic stem cell therapy in a rat model of cavernosal nerve injury. BJU Int. 94, 904–909 (2004).

    Article  PubMed  Google Scholar 

  95. Kendirci, M. et al. Transplantation of nonhematopoietic adult bone marrow stem/progenitor cells isolated by p75 nerve growth factor receptor into the penis rescues erectile function in a rat model of cavernous nerve injury. J. Urol. 184, 1560–1566 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Baraniak, P. R. & McDevitt, T. C. Stem cell paracrine actions and tissue regeneration. Regen. Med. 5, 121–143 (2010).

    Article  PubMed  Google Scholar 

  97. Zhang, H. et al. Adipose tissue-derived stem cells secrete CXCL5 cytokine with neurotrophic effects on cavernous nerve regeneration. J. Sex. Med. 8, 437–446 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Albersen, M. & Lue, T. F. Re: Transplantation of nonhematopoietic adult bone marrow stem/progenitor cells isolated by p75 nerve growth factor receptor into the penis rescues erectile function in a rat model of cavernous nerve injury. M. Kendirci, L. Trost, B. Bakondi, M. J. Whitney, W. J. G. Hellstrom and J. L. Spees J Urol 2010; 184: 1560–1566. J. Urol. 185, 1158–1161 (2011).

    Google Scholar 

  99. Lin, G. et al. Tracking intracavernously injected adipose-derived stem cells to bone marrow. Int. J. Impot. Res. 23, 268–275 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fandel, T. M. et al. Recruitment of intracavernously injected adipose-derived stem cells to the major pelvic ganglion improves erectile function in a rat model of cavernous nerve injury. Eur. Urol. 61, 201–210 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Qiu, X. et al. Effects of Intravenous injection of adipose-derived stem cells in a rat model of radiation therapy-induced erectile dysfunction. J. Sex. Med. http://dx.doi.org/10.1111/j.1743–61092012.02753.x.

  102. Qiu, X. et al. Both immediate and delayed intracavernous injection of autologous adipose-derived stromal vascular fraction enhances recovery of erectile function in a rat model of cavernous nerve injury. Eur. Urol. http://dx.doi.org/10.1016/j.eururo.2012.02.003.

  103. Abdel Aziz, M. T. et al. Effect of mesenchymal stem cell penile transplantation on erectile signaling of aged rats. Andrologia 42, 187–192 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Qiu, X. et al. Intracavernous transplantation of bone marrow-derived mesenchymal stem cells restores erectile function of streptozocin-induced diabetic rats. J. Sex. Med. 8, 427–436 (2011).

    Article  PubMed  Google Scholar 

  105. Sun, C. et al. Neurotrophic effect of bone marrow mesenchymal stem cells for erectile dysfunction in diabetic rats. Int. J. Androl. http://dx.doi.org/10.1111/j.1365-26052012.01250.x.

  106. Huang, Y.-C. et al. The effect of intracavernous injection of adipose tissue-derived stem cells on hyperlipidemia-associated erectile dysfunction in a rat model. J. Sex. Med. 7, 1391–1400 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Garcia, M. M. et al. Treatment of erectile dysfunction in the obese type 2 diabetic ZDF rat with adipose tissue-derived stem cells. J. Sex. Med. 7, 89–98 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Nolazco, G. et al. Effect of muscle-derived stem cells on the restoration of corpora cavernosa smooth muscle and erectile function in the aged rat. BJU Int. 101, 1156–1164 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Kim, Y. et al. Injection of skeletal muscle-derived cells into the penis improves erectile function. Int. J. Impot. Res. 18, 329–334 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Woo, J. C. et al. Transplantation of muscle-derived stem cells into the corpus cavernosum restores erectile function in a rat model of cavernous nerve injury. Korean J. Urol. 52, 359–363 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Carr, L. K. et al. 1-year follow-up of autologous muscle-derived stem cell injection pilot study to treat stress urinary incontinence. Int. Urogynecol. J. Pelvic Floor Dysfunct. 19, 881–883 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Kershen, R. T., Yoo, J. J., Moreland, R. B., Krane, R. J. & Atala, A. Reconstitution of human corpus cavernosum smooth muscle in vitro and in vivo. Tissue Eng. 8, 515–524 (2002).

    Article  PubMed  Google Scholar 

  113. Park, H. J., Yoo, J. J., Kershen, R. T., Moreland, R. & Atala, A. Reconstitution of human corporal smooth muscle and endothelial cells in vivo. J. Urol. 162, 1106–1109 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. Falke, G., Yoo, J. J., Kwon, T. G., Moreland, R. & Atala, A. Formation of corporal tissue architecture in vivo using human cavernosal muscle and endothelial cells seeded on collagen matrices. Tissue Eng. 9, 871–879 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Song, L.-J. et al. Construction of cavernosum smooth muscle using umbilical artery smooth muscle cells seeded on acellular corporal collagen matrices. Int. J. Androl. 32, 514–523 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Chen, K.-L., Eberli, D., Yoo, J. J. & Atala, A. Bioengineered corporal tissue for structural and functional restoration of the penis. Proc. Natl Acad. Sci. USA 107, 3346–3350 (2010).

    Article  PubMed  Google Scholar 

  117. Ji, C. et al. Construction of tissue-engineered corpus cavernosum with muscle-derived stem cells and transplantation in vivo. BJU Int. 107, 1638–1646 (2011).

    Article  PubMed  Google Scholar 

  118. Levine, L. A. Editorial comment on: surgical treatment of Peyronie's disease by plaque incision and grafting with buccal mucosa. Eur. Urol. 55, 1475–1476 (2009).

    Article  PubMed  Google Scholar 

  119. Ferretti, L. et al. Tissue engineering for penile surgery: comparative study of noncellular and cell-seeded synthetic grafts for tunica albuginea replacement. J. Sex. Med. 9, 625–631 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Imbeault, A. et al. Surgical option for the correction of Peyronie's disease: an autologous tissue-engineered endothelialized graft. J. Sex. Med. 8, 3227–3235 (2011).

    Article  PubMed  Google Scholar 

  121. Kim, E. D. et al. Interposition of sural nerve restores function of cavernous nerves resected during radical prostatectomy. J. Urol. 161, 188–192 (1999).

    Article  CAS  PubMed  Google Scholar 

  122. Davis, J. W. et al. Randomized phase II trial evaluation of erectile function after attempted unilateral cavernous nerve-sparing retropubic radical prostatectomy with versus without unilateral sural nerve grafting for clinically localized prostate cancer. Eur. Urol. 55, 1135–1143 (2009).

    Article  PubMed  Google Scholar 

  123. May, F. et al. Nerve replacement strategies for cavernous nerves. Eur. Urol. 48, 372–378 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Hisasue, S.-I. et al. Cavernous nerve reconstruction with a biodegradable conduit graft and collagen sponge in the rat. J. Urol. 173, 286–291 (2005).

    Article  PubMed  Google Scholar 

  125. Matsuura, S., Obara, T., Tsuchiya, N., Suzuki, Y. & Habuchi, T. Cavernous nerve regeneration by biodegradable alginate gel sponge sheet placement without sutures. Urology 68, 1366–1371 (2006).

    Article  PubMed  Google Scholar 

  126. May, F. et al. Schwann cell seeded guidance tubes restore erectile function after ablation of cavernous nerves in rats. J. Urol. 172, 374–377 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. May, F. et al. GDNF-transduced Schwann cell grafts enhance regeneration of erectile nerves. Eur. Urol. 54, 1179–1187 (2008).

    Article  PubMed  Google Scholar 

  128. Lin, G. et al. Cavernous nerve repair with allogenic adipose matrix and autologous adipose-derived stem cells. Urology 77, 1509.e1–e8 (2011).

    Google Scholar 

  129. Angeloni, N. L. et al. Regeneration of the cavernous nerve by Sonic hedgehog using aligned peptide amphiphile nanofibers. Biomaterials 32, 1091–1101 (2011).

    Article  CAS  PubMed  Google Scholar 

  130. Champion, H. C. et al. Gene transfer of endothelial nitric oxide synthase to the penis augments erectile responses in the aged rat. Proc. Natl Acad. Sci. USA 96, 11648–11652 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Bivalacqua, T. J. et al. Gene transfer of endothelial nitric oxide synthase partially restores nitric oxide synthesis and erectile function in streptozotocin diabetic rats. J. Urol. 169, 1911–1917 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Chancellor, M. B. et al. Nitric oxide synthase gene transfer for erectile dysfunction in a rat model. Plasmid 91, 691–696 (2003).

    CAS  Google Scholar 

  133. So, I., Chae, M. R. & Lee, S. W. Gene transfer of the K(ATP) channel restores age-related erectile dysfunction in rats. BJU Int. 100, 1154–1160 (2007).

    CAS  PubMed  Google Scholar 

  134. Pu, X-yong, Hu, L-quan, Wang, H.-P., Luo, Y.-X. & Wang, X-huan. Improvement in erectile dysfunction after insulin-like growth factor-1 gene therapy in diabetic rats. Asian J. Androl. 9, 83–91 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Abdel Aziz, M. T. et al. Effect of HO-1 cDNA-liposome complex transfer on erectile signalling of aged rats. Andrologia 41, 176–183 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Song, Y. S. et al. Potential differentiation of human mesenchymal stem cell transplanted in rat corpus cavernosum toward endothelial or smooth muscle cells. Int. J. Impot. Res. 19, 378–385 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Song, Y. S. et al. Human neural crest stem cells transplanted in rat penile corpus cavernosum to repair erectile dysfunction. BJU Int. 102, 220–224 (2008).

    Article  CAS  PubMed  Google Scholar 

  138. Fall, P. A. et al. Apoptosis and effects of intracavernous bone marrow cell injection in a rat model of postprostatectomy erectile dysfunction. Eur. Urol. 56, 716–725 (2009).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

M. Albersen is a fellow of Research Foundation-Flanders and of the Federico Foundation.

Author information

Authors and Affiliations

Authors

Contributions

L. Hakim and M. Albersen researched data for the article and wrote the manuscript. All authors made a substantial contribution to discussion of content and reviewed and edited the article before submission.

Corresponding author

Correspondence to Maarten Albersen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hakim, L., Van der Aa, F., Bivalacqua, T. et al. Emerging tools for erectile dysfunction: a role for regenerative medicine. Nat Rev Urol 9, 520–536 (2012). https://doi.org/10.1038/nrurol.2012.143

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2012.143

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing