Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Where next for the endoscope?

Abstract

The concept of examining the body's interior and its organs dates back to ancient times. The roots of modern endoscopy lie in early nineteenth century Europe, and the intervening centuries have seen a steady evolution of devices and techniques. Nowadays, a wide variety of urinary tract disorders are successfully managed in a minimally invasive manner thanks to the endoscope and related technologies. Distal-sensor, 'digital', endoscopes have the potential to revolutionize the field, and change the way in which we use and think about endoscopy. Virtual endoscopy, capsule endoscopy, and a range of other techniques derived from physics and molecular biology all promise great improvements in visualization of the urinary tract and other urologic structures. Ultimately, the continued improvement of these minimally invasive technologies will enhance the quality of care that we can offer our patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bozzini and his Lichtleiter.
Figure 2
Figure 3: Endoscope protection system (EPS).
Figure 4: NBI system.
Figure 5: Improved visualization of bladder lesions with NBI.
Figure 6

Similar content being viewed by others

References

  1. Verger-Kuhnke, A. B., Reuter, M. A. & Beccaria, M. L. Biography of Phillip Bozzini (1773–1809) an idealist of the endoscopy [Spanish]. Actas Urol. Esp. 31, 437–444 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Zajaczkowski, T. & Zamann, A. P. Julius Bruck (1840–1902) and his influence on the endoscopy of today. World J. Urol. 22, 293–303 (2004).

    Article  PubMed  Google Scholar 

  3. Léger, P. Antonin Jean Desormeaux [French]. Prog. Urol. 14, 1231–1238 (2004).

    PubMed  Google Scholar 

  4. Herr, H. W. Max Nitze, the cystoscope and urology. J. Urol. 176, 1313–1316 (2006).

    Article  PubMed  Google Scholar 

  5. Verger-Kuhnke, A. B. & Beccaría, M. L. The biography of Maximilian Nitze (1848–1906) and his contribution to the urology [Spanish]. Actas Urol. Esp. 31, 697–704 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Reuter, M. A. & Reuter, H. J. The development of urological endoscopy in America. World J. Urol. 17, 176–183 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Gow, J. G. Harold Hopkins and optical systems for urology—an appreciation. Urology 52, 152–157 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Shah, J. Endoscopy through the ages. BJU Int. 89, 645–652 (2002).

    Article  PubMed  Google Scholar 

  9. Marshall, V. Fiber optics in urology. J. Urol. 91, 110–114 (1963).

    Article  Google Scholar 

  10. Boyle, W. S. & Smith, G. S. Charge coupled semiconductor devices. Bell System Technical Journal 49, 587–593 (1970).

    Article  Google Scholar 

  11. Damerell, C. J. S., Farley, F. J. M., Gillman, A. R. & Wickens, F. J. Charge-coupled devices for particle detection with high spatial resolution. Nucl. Instr. Methods 185, 33–42 (1981).

    Article  CAS  Google Scholar 

  12. Golden, J. P. & Ligler, F. S. A comparison of imaging methods for use in an array biosensor. Biosens. Bioelectron. 17, 719–725 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Quayle, S. S., Ames, C. D., Lieber, D., Yan, Y. & Landman, J. Comparison of optical resolution with digital and standard fiberoptic cystoscopes in an in vitro model. Urology 66, 489–493 (2005).

    Article  PubMed  Google Scholar 

  14. Borin, J. F., Abdelshehid, C. S. & Clayman, R. V. Comparison of resolution, contrast, and color differentiation among fiberoptic and digital flexible cystoscopes. J. Endourol. 20, 54–58 (2006).

    Article  PubMed  Google Scholar 

  15. Okhunov, Z. et al. Prospective comparison of flexible fiberoptic and digital cystoscopes. Urology 74, 427–430 (2009).

    Article  PubMed  Google Scholar 

  16. Andonian, S., Okeke, Z. & Smith, A. D. Digital ureteroscopy: the next step. J. Endourol. 22, 603–606 (2008).

    Article  PubMed  Google Scholar 

  17. Andonian, S., Okeke, Z., Anidjar, M. & Smith, A. D. Digital nephroscopy: the next step. J. Endourol. 22, 601–602 (2008).

    Article  PubMed  Google Scholar 

  18. Sung, C. et al. Evaluation of efficacy of novel optically activated digital endoscope protection system against laser energy damage. Urology 72, 57–60 (2008).

    Article  PubMed  Google Scholar 

  19. Xavier, K., Hruby, G. W., Kelly, C. R., Landman, J. & Gupta, M. Clinical evaluation of efficacy of novel optically activated digital endoscope protection system against laser energy damage. Urology 73, 37–40 (2009).

    Article  PubMed  Google Scholar 

  20. ASGE Technology Committee et al. Narrow band imaging and multiband imaging. Gastrointest. Endosc. 67, 581–589 (2008).

  21. Herr, H. W. & Donat, S. M. A comparison of white-light cystoscopy and narrow-band imaging cystoscopy to detect bladder tumour recurrences. BJU Int. 102, 1111–1114 (2008).

    Article  PubMed  Google Scholar 

  22. Rabbani, F., Perrotti, M., Russo, P. & Herr, H. W. Upper-tract tumors after an initial diagnosis of bladder cancer: argument for long-term surveillance. J. Clin. Oncol. 19, 94–100 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Bryan, R. T., Billingham, L. J. & Wallace, D. M. Narrow-band imaging flexible cystoscopy in the detection of recurrent urothelial cancer of the bladder. BJU Int. 101, 702–705 (2008).

    Article  PubMed  Google Scholar 

  24. Allan, J. D. & Tolley, D. A. Virtual endoscopy in urology. Curr. Opin. Urol. 11, 189–192 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Babjuk, M. et al. EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder. Eur. Urol. 54, 303–314 (2008).

    Article  PubMed  Google Scholar 

  26. Kivrak, A. S., Kiresi, D., Emlik, D., Odev, K. & Kilinc, M. Comparison of CT virtual cystoscopy of the contrast material-filled bladder with conventional cystoscopy in the diagnosis of bladder tumours. Clin. Radiol. 64, 30–37 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Lopes, R. I., Nogueira, L., Albertotti, C. J., Takahashi, D. Y. & Lopes, R. N. Comparison of virtual cystoscopy and transabdominal ultrasonography with conventional cystoscopy for bladder tumor detection. J. Endourol. 22, 1725–1729 (2008).

    Article  PubMed  Google Scholar 

  28. Albani, J. M., Ciaschini, M. W., Streem, S. B., Herts, B. R. & Angermeier, K. W. The role of computerized tomographic urography in the initial evaluation of hematuria. J. Urol. 177, 644–648 (2007).

    Article  PubMed  Google Scholar 

  29. Takebayashi, S. et al. Computerized tomography nephroscopic images of renal pelvic carcinoma. J. Urol. 162, 315–318 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Takebayashi, S. et al. Computerized tomographic ureteroscopy for diagnosing ureteral tumors. J. Urol. 163, 42–46 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Battista, G. et al. Computerized tomography virtual endoscopy in evaluation of upper urinary tract tumors: initial experience. Abdom. Imaging 34, 107–112 (2009).

    Article  PubMed  Google Scholar 

  32. Leyendecker, J. R., Barnes, C. E. & Zagoria, R. J. MR urography: techniques and clinical applications. Radiographics 28, 23–46 (2008).

    Article  PubMed  Google Scholar 

  33. Saurin, J. C. Capsule endoscopy. Endoscopy 39, 986–991 (2007).

    Article  PubMed  Google Scholar 

  34. Nakamura, T. & Terano, A. Capsule endoscopy: past, present, and future. J. Gastroenterol. 43, 93–99 (2008).

    Article  PubMed  Google Scholar 

  35. Gettman, M. T. & Swain, P. Initial experimental evaluation of wireless capsule endoscopes in the bladder: implications for capsule cystoscopy. Eur. Urol. 55, 1207–1212 (2009).

    Article  PubMed  Google Scholar 

  36. Matousek, P. & Stone, N. Emerging concepts in deep Raman spectroscopy of biological tissue. Analyst 134, 1058–1066 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Hanchanale, V. S., Rao, A. R. & Das, S. Raman spectroscopy and its urological applications. Indian J. Urol. 24, 444–450 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cauberg, E. C. C. et al. A new generation of optical diagnostics for bladder cancer: technology, diagnostic accuracy, and future applications. Eur. Urol. 56, 287–296 (2009).

    Article  PubMed  Google Scholar 

  39. Cabello, J. et al. Digital autoradiography using room temperature CCD and CMOS imaging technology. Phys. Med. Biol. 52, 4993–5011 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Westhäuser, M. et al. Optimizing color reproduction of a topometric measurement system for medical applications. Med. Eng. Phys. 30, 1065–1070 (2008).

    Article  PubMed  Google Scholar 

  41. Weinberg, D. S. Digital imaging as a teaching tool for pathologists. Clin. Lab. Med. 17, 229–244 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Bohndiek, S. E. et al. A CMOS active pixel sensor system for laboratory-based X-ray diffraction studies of biological tissue. Phys. Med. Biol. 53, 655–672 (2008).

    Article  PubMed  Google Scholar 

  43. Trocmé, M., Higueret, S., Husson, D., Nourreddine, A. & Lê, T. D. Development of a new electronic personal neutron dosemeter using a CMOS active pixel sensor. Radiat. Prot. Dosimetry 126, 536–540 (2007).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Landman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Natalin, R., Landman, J. Where next for the endoscope?. Nat Rev Urol 6, 622–628 (2009). https://doi.org/10.1038/nrurol.2009.199

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2009.199

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing