Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Translational use of event-related potentials to assess circuit integrity in ASD

Key Points

  • Autism spectrum disorder (ASD) can be characterized as a disorder of connectivity that disrupts the spatially diffuse neural social circuit to cause characteristic deficits in social interaction

  • Event-related potentials (ERPs) are EEG-based readouts of time-locked circuit activation, alterations of which reflect circuit dysfunction

  • Sensory-evoked ERPs can be measured in patients with ASD and animal models of the disorder

  • Socially-evoked ERPs are abnormal in humans with ASD, suggesting that ERPs could represent a quantitative biomarker of social impairment

  • Characterization of socially evoked ERPs in animal models of ASD could provide a translational biomarker of social cognition that could aid forward and backward translational research

Abstract

Deficits in social cognition are the defining characteristic of autism spectrum disorder (ASD). Social cognition requires the integration of several neural circuits in a time-sensitive fashion, so impairments in social interactions could arise as a result of alterations in network connectivity. Electroencephalography (EEG) has revealed abnormalities in event related potentials (ERPs) evoked by auditory and visual sensory stimuli in humans with ASD, indicating disruption of neural connectivity. Similar abnormalities in sensory-evoked ERPs have been observed in animal models of ASD, suggesting that ERPs have the potential to provide a translational biomarker of the disorder. People with ASD also have abnormal ERPs in response to auditory and visual social stimuli, demonstrating functional disruption of the social circuit. To assess the integrity of the social circuit and characterize biomarkers of circuit dysfunction, novel EEG paradigms that use social stimuli to induce ERPs should be developed for use in animal models. The identification of a socially-relevant ERP that is consistent in animal models and humans would facilitate the development of pharmacological treatment strategies for the social impairments in ASD and other neuropsychiatric disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Auditory event-related potentials in humans and rodents.
Figure 2: Similar alterations in sensory event-related potentials in humans and rodents in syndromic and idiopathic autism spectrum disorder.
Figure 3: Forward and backward translation of an identified event-related potential biomarker of autism spectrum disorder.

Similar content being viewed by others

References

  1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders 5th edn (American Psychiatric Assocation, 2013).

  2. Schilbach, L. Towards a second-person neuropsychiatry. Phil. Trans. R. Soc. B 371, 20150081 (2016).

    PubMed  PubMed Central  Google Scholar 

  3. Wass, S. Distortions and disconnections: disrupted brain connectivity in autism. Brain Cogn. 75, 18–28 (2011).

    PubMed  Google Scholar 

  4. Green, M. F., Horan, W. P. & Lee, J. Social cognition in schizophrenia. Nat. Rev. Neurosci. 16, 620–631 (2015).

    CAS  PubMed  Google Scholar 

  5. Jeste, S. S. et al. Symptom profiles of autism spectrum disorder in tuberous sclerosis complex. Neurology 87, 766–772 (2016).

    PubMed  PubMed Central  Google Scholar 

  6. Mount, R. H., Charman, T., Hastings, R. P., Reilly, S. & Cass, H. Features of autism in Rett syndrome and severe mental retardation. J. Autism Dev. Disord. 33, 435–442 (2003).

    PubMed  Google Scholar 

  7. Earle, J. F. An introduction to the psychopharmacology of children and adolescents with autism spectrum disorder. J. Child Adolesc. Psychiatr. Nurs. 29, 62–71 (2016).

    PubMed  Google Scholar 

  8. Jeste, S. S. & Nelson, C. A. III. Event related potentials in the understanding of autism spectrum disorders: an analytical review. J. Autism Dev. Disord. 39, 495–510 (2009). Reviews sensory and socially evoked ERPs in patients with ASD and provides evidence for the use of ERPs as biomarkers.

    PubMed  Google Scholar 

  9. Brandwein, A. B. et al. Neurophysiological indices of atypical auditory processing and multisensory integration are associated with symptom severity in autism. J. Autism Dev. Disord. 45, 230–244 (2015).

    PubMed  PubMed Central  Google Scholar 

  10. Sinclair, D., Oranje, B., Razak, K. A., Siegel, S. J. & Schmid, S. Sensory processing in autism spectrum disorders and Fragile X syndrome —from the clinic to animal models. Neurosci. Biobehav. Rev. http://dx.doi.org/10.1016/j.neubiorev.2016.05.029 (2016).

  11. Jeste, S. S., Frohlich, J. & Loo, S. K. Electrophysiological biomarkers of diagnosis and outcome in neurodevelopmental disorders. Curr. Opin. Neurol. 28, 110–116 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Geschwind, D. H. & Levitt, P. Autism spectrum disorders: developmental disconnection syndromes. Curr. Opin. Neurobiol. 17, 103–111 (2007).

    CAS  PubMed  Google Scholar 

  13. Menon, V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn. Sci. 15, 483–506 (2011).

    PubMed  Google Scholar 

  14. Vissers, M. E., Cohen, M. X. & Geurts, H. M. Brain connectivity and high functioning autism: a promising path of research that needs refined models, methodological convergence, and stronger behavioral links. Neurosci. Biobehav. Rev. 36, 604–625 (2012).

    PubMed  Google Scholar 

  15. Ameis, S. H. & Catani, M. Altered white matter connectivity as a neural substrate for social impairment in autism spectrum disorder. Cortex 62, 158–181 (2015).

    PubMed  Google Scholar 

  16. Courchesne, E. & Pierce, K. Why the frontal cortex in autism might be talking only to itself: local over-connectivity but long-distance disconnection. Curr. Opin. Neurobiol. 15, 225–230 (2005).

    CAS  PubMed  Google Scholar 

  17. Minshew, N. J. & Williams, D. L. The new neurobiology of autism: cortex, connectivity, and neuronal organization. Arch. Neurol. 64, 945–950 (2007).

    PubMed  PubMed Central  Google Scholar 

  18. Picci, G., Gotts, S. J. & Scherf, K. S. A theoretical rut: revisiting and critically evaluating the generalized under/over-connectivity hypothesis of autism. Dev. Sci. 19, 524–549 (2016).

    PubMed  Google Scholar 

  19. Bourgeron, T. From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nat. Rev. Neurosci. 16, 551–563 (2015).

    CAS  PubMed  Google Scholar 

  20. Ebrahimi-Fakhari, D. & Sahin, M. Autism and the synapse: emerging mechanisms and mechanism-based therapies. Curr. Opin. Neurol. 28, 91–102 (2015).

    CAS  PubMed  Google Scholar 

  21. Catani, M., Dell'acqua, F. & Thiebaut de Schotten, M. A revised limbic system model for memory, emotion and behaviour. Neurosci. Biobehav. Rev. 37, 1724–1737 (2013).

    PubMed  Google Scholar 

  22. Just, M. A., Cherkassky, V. L., Keller, T. A. & Minshew, N. J. Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain 127, 1811–1821 (2004).

    PubMed  Google Scholar 

  23. Belmonte, M. K. et al. Autism and abnormal development of brain connectivity. J. Neurosci. 24, 9228–9231 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Casanova, M. F., Buxhoeveden, D. P., Switala, A. E. & Roy, E. Minicolumnar pathology in autism. Neurology 58, 428–432 (2002).

    PubMed  Google Scholar 

  25. Rane, P. et al. Connectivity in autism: a review of MRI connectivity studies. Harv. Rev. Psychiatry 23, 223–244 (2015).

    PubMed  PubMed Central  Google Scholar 

  26. Horwitz, B., Rumsey, J. M., Grady, C. L. & Rapoport, S. I. The cerebral metabolic landscape in autism. Intercorrelations of regional glucose utilization. Arch. Neurol. 45, 749–755 (1988).

    CAS  PubMed  Google Scholar 

  27. Buzsaki, G., Anastassiou, C. A. & Koch, C. The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13, 407–420 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Peters, J. M. et al. Brain functional networks in syndromic and non-syndromic autism: a graph theoretical study of EEG connectivity. BMC Med. 11, 54 (2013).

    PubMed  PubMed Central  Google Scholar 

  29. Featherstone, R. E. et al. EEG biomarkers of target engagement, therapeutic effect, and disease process. Ann. NY Acad. Sci. 1344, 12–26 (2015).

    CAS  PubMed  Google Scholar 

  30. Baum, S. H., Stevenson, R. A. & Wallace, M. T. Behavioral, perceptual, and neural alterations in sensory and multisensory function in autism spectrum disorder. Prog. Neurobiol. 134, 140–160 (2015).

    PubMed  PubMed Central  Google Scholar 

  31. Baum, S. H., Stevenson, R. A. & Wallace, M. T. Testing sensory and multisensory function in children with autism spectrum disorder. J. Vis. Exp. http://dx.doi.org/10.3791/52677 (2015).

  32. Simon, D. M. & Wallace, M. T. Dysfunction of sensory oscillations in autism spectrum disorder. Neurosci. Biobehav. Rev. 68, 848–861 (2016).

    PubMed  PubMed Central  Google Scholar 

  33. LeBlanc, J. J. et al. Visual evoked potentials detect cortical processing deficits in Rett syndrome. Ann. Neurol. 78, 775–786 (2015). Compares the visual evoked responses in patients with Rett syndrome and with those in the Mecp2 mouse model of Rett syndrome.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ethridge, L. E. et al. Reduced habituation of auditory evoked potentials indicate cortical hyper-excitability in fragile X syndrome. Transl Psychiatry 6, e787 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Tye, C. et al. Autism diagnosis differentiates neurophysiological responses to faces in adults with tuberous sclerosis complex. J. Neurodev. Disord. 7, 33 (2015). Evidence that socially induced ERPs can be used to distinguish between patients with ASD and those without ASD in a high risk population.

    PubMed  PubMed Central  Google Scholar 

  36. Seri, S., Cerquiglini, A., Pisani, F. & Curatolo, P. Autism in tuberous sclerosis: evoked potential evidence for a deficit in auditory sensory processing. Clin. Neurophysiol. 110, 1825–1830 (1999).

    CAS  PubMed  Google Scholar 

  37. Bonnet-Brilhault, F. et al. GABA/glutamate synaptic pathways targeted by integrative genomic and electrophysiological explorations distinguish autism from intellectual disability. Mol. Psychiatry 21, 411–418 (2016).

    CAS  PubMed  Google Scholar 

  38. Hu, W.F., Chahrour, M. H., & Walsh, C. A. The diverse genetic landscape of neurodevelopmental disorders. Annu. Rev. Genomics Hum. Genet. 15, 195–213 (2014).

    PubMed  Google Scholar 

  39. Mohammad-Rezazadeh, I., Frohlich, J., Loo, S. K. & Jeste, S. S. Brain connectivity in autism spectrum disorder. Curr. Opin. Neurol. 29, 137–147 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ponton, C. W., Eggermont, J. J., Kwong, B. & Don, M. Maturation of human central auditory system activity: evidence from multi-channel evoked potentials. Clin. Neurophysiol. 111, 220–236 (2000).

    CAS  PubMed  Google Scholar 

  41. Ponton, C. W. et al. Maturation of the mismatch negativity: effects of profound deafness and cochlear implant use. Audiol. Neurootol. 5, 167–185 (2000).

    CAS  PubMed  Google Scholar 

  42. Bruneau, N., Roux, S., Adrien, J. L. & Barthelemy, C. Auditory associative cortex dysfunction in children with autism: evidence from late auditory evoked potentials (N1 wave-T complex). Clin. Neurophysiol. 110, 1927–1934 (1999).

    CAS  PubMed  Google Scholar 

  43. Gandal, M. J. et al. Validating gamma oscillations and delayed auditory responses as translational biomarkers of autism. Biol. Psychiatry 68, 1100–1106 (2010). The first paper to characterize EEG biomarkers in an ASD mouse model.

    PubMed  PubMed Central  Google Scholar 

  44. Madsen, G. F. et al. Normal P50 gating in children with autism, yet attenuated P50 amplitude in the asperger subcategory. Autism Res. 8, 371–378 (2015).

    PubMed  Google Scholar 

  45. Stroganova, T. A. et al. Abnormal pre-attentive arousal in young children with autism spectrum disorder contributes to their atypical auditory behavior: an ERP study. PLoS ONE 8, e69100 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Abdeltawwab, M. M. & Baz, H. Automatic pre-attentive auditory responses: MMN to tone burst frequency changes in autistic school-age children. J. Int. Adv. Otol. 11, 36–41 (2015).

    PubMed  Google Scholar 

  47. Kujala, T., Tervaniemi, M. & Schroger, E. The mismatch negativity in cognitive and clinical neuroscience: theoretical and methodological considerations. Biol. Psychol. 74, 1–19 (2007).

    PubMed  Google Scholar 

  48. Lepisto, T. et al. The discrimination of and orienting to speech and non-speech sounds in children with autism. Brain Res. 1066, 147–157 (2005).

    PubMed  Google Scholar 

  49. Ferri, R. et al. The mismatch negativity and the P3a components of the auditory event-related potentials in autistic low-functioning subjects. Clin. Neurophysiol. 114, 1671–1680 (2003).

    PubMed  Google Scholar 

  50. Gomot, M. et al. Candidate electrophysiological endophenotypes of hyper-reactivity to change in autism. J. Autism Dev. Disord. 41, 705–714 (2011).

    PubMed  Google Scholar 

  51. Gomot, M., Giard, M. H., Adrien, J. L., Barthelemy, C. & Bruneau, N. Hypersensitivity to acoustic change in children with autism: electrophysiological evidence of left frontal cortex dysfunctioning. Psychophysiology 39, 577–584 (2002).

    PubMed  Google Scholar 

  52. Orekhova, E. V. et al. Sensory gating in young children with autism: relation to age, IQ, and EEG gamma oscillations. Neurosci. Lett. 434, 218–223 (2008).

    CAS  PubMed  Google Scholar 

  53. Vandenbroucke, M. W., Scholte, H. S., van Engeland, H., Lamme, V. A. & Kemner, C. A neural substrate for atypical low-level visual processing in autism spectrum disorder. Brain 131, 1013–1024 (2008).

    PubMed  Google Scholar 

  54. Pei, F., Baldassi, S. & Norcia, A. M. Electrophysiological measures of low-level vision reveal spatial processing deficits and hemispheric asymmetry in autism spectrum disorder. J. Vis. 14, 3 (2014).

    PubMed  Google Scholar 

  55. Constable, P. A., Gaigg, S. B., Bowler, D. M. & Thompson, D. A. Motion and pattern cortical potentials in adults with high-functioning autism spectrum disorder. Doc. Ophthalmol. 125, 219–227 (2012).

    PubMed  Google Scholar 

  56. Baruth, J. M., Casanova, M. F., Sears, L. & Sokhadze, E. Early-stage visual processing abnormalities in high-functioning autism spectrum disorder (ASD). Transl Neurosci. 1, 177–187 (2010).

    PubMed  Google Scholar 

  57. Milne, E., Scope, A., Pascalis, O., Buckley, D. & Makeig, S. Independent component analysis reveals atypical electroencephalographic activity during visual perception in individuals with autism. Biol. Psychiatry 65, 22–30 (2009).

    PubMed  Google Scholar 

  58. Takarae, Y., Luna, B., Minshew, N. J. & Sweeney, J. A. Visual motion processing and visual sensorimotor control in autism. J. Int. Neuropsychol. Soc. 20, 1 13–122 (2014).

    Google Scholar 

  59. LeBlanc, J. J. & Nelson, C. A. Deletion and duplication of 16p11.2 are associated with opposing effects on visual evoked potential amplitude. Mol. Autism 7, 30 (2016).

    PubMed  PubMed Central  Google Scholar 

  60. Knoth, I. S., Vannasing, P., Major, P., Michaud, J. L. & Lippe, S. Alterations of visual and auditory evoked potentials in fragile X syndrome. Int. J. Dev. Neurosci. 36, 90–97 (2014).

    PubMed  Google Scholar 

  61. Goffin, D. et al. Rett syndrome mutation MeCP2 T158A disrupts DNA binding, protein stability and ERP responses. Nat. Neurosci. 15, 274–283 (2012).

    CAS  Google Scholar 

  62. Engineer, C. T. et al. Degraded speech sound processing in a rat model of fragile X syndrome. Brain Res. 1564, 72–84 (2014). Evidence for an association between speech-induced ERPs and single-unit activation in a rodent model related to ASD.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang, I. T. et al. Loss of CDKL5 disrupts kinome profile and event-related potentials leading to autistic-like phenotypes in mice. Proc. Natl Acad. Sci. USA 109, 21516–21521 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Rojas, D. C. & Wilson, L. B. γ-band abnormalities as markers of autism spectrum disorders. Biomark. Med. 8, 353–368 (2014).

    CAS  PubMed  Google Scholar 

  65. Vogt, D., Cho, K. K., Lee, A. T., Sohal, V. S. & Rubenstein, J. L. The parvalbumin/somatostatin ratio is increased in Pten mutant mice and by human PTEN ASD alleles. Cell Rep. 11, 944–956 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Silverman, J. L. et al. Shank3B knockout mice display unusual adult reciprocal social interactions, ultrasonic vocalizations, repetitive self-grooming, seizure activity and EEG gamma-power [poster]. http://www.abstractsonline.com/Plan/ViewAbstract.aspx?sKey=127f139c-6b0c-4f86-b406-80c9474aea6c&cKey=f10f1470-6837-40f6-8348-338660bb2966&mKey=d0ff4555-8574-4fbb-b9d4-04eec8ba0c84. (2015)

  67. Miller, V. M. et al. Novel inter-hemispheric white matter connectivity in the BTBR mouse model of autism. Brain Res. 1513, 26–33 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Buzsaki, G. & Wang, X. J. Mechanisms of gamma oscillations. Annu. Rev. Neurosci. 35, 203–225 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Bartos, M., Vida, I. & Jonas, P. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat. Rev. Neurosci. 8, 45–56 (2007).

    CAS  PubMed  Google Scholar 

  70. Sohal, V. S., Zhang, F., Yizhar, O. & Deisseroth, K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459, 698–702 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Saunders, J. A. et al. Knockout of NMDA receptors in parvalbumin interneurons recreates autism-like phenotypes. Autism Res. 6, 69–77 (2013).

    PubMed  PubMed Central  Google Scholar 

  72. Goffin, D., Brodkin, E. S., Blendy, J. A., Siegel, S. J. & Zhou, Z. Cellular origins of auditory event-related potential deficits in Rett syndrome. Nat. Neurosci. 17, 804–806 (2014). A study that used genetic manipulations to identify a source of ERP alterations in a mouse model related to ASD.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Gandal, M. J. et al. GABAB-mediated rescue of altered excitatory-inhibitory balance, gamma synchrony and behavioral deficits following constitutive NMDAR-hypofunction. Transl Psychiatry 2, e142 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Gandal, M. J. et al. Mice with reduced NMDA receptor expression: more consistent with autism than schizophrenia? Genes Brain Behav. 11, 740–750 (2012).

    CAS  PubMed  Google Scholar 

  75. Kujala, T., Lepisto, T. & Naatanen, R. The neural basis of aberrant speech and audition in autism spectrum disorders. Neurosci. Biobehav. Rev. 37, 697–704 (2013).

    CAS  PubMed  Google Scholar 

  76. Escera, C., Alho, K., Schroger, E. & Winkler, I. Involuntary attention and distractibility as evaluated with event-related brain potentials. Audiol. Neurootol. 5, 151–166 (2000).

    CAS  PubMed  Google Scholar 

  77. Rossion, B. Understanding face perception by means of human electrophysiology. Trends Cogn. Sci. 18, 310–318 (2014).

    PubMed  Google Scholar 

  78. Dawson, G. et al. Neurocognitive and electrophysiological evidence of altered face processing in parents of children with autism: implications for a model of abnormal development of social brain circuitry in autism. Dev. Psychopathol. 17, 679–697 (2005). Early characterization of a face response ERP as a biomarker of social circuit dysfunction in ASD.

    PubMed  Google Scholar 

  79. Dawson, G., Finley, C., Phillips, S., Galpert, L. & Lewy, A. Reduced P3 amplitude of the event-related brain potential: its relationship to language ability in autism. J. Autism Dev. Disord. 18, 493–504 (1988).

    CAS  PubMed  Google Scholar 

  80. Ceponiene, R. et al. Speech-sound-selective auditory impairment in children with autism: they can perceive but do not attend. Proc. Natl Acad. Sci. USA 100, 5567–5572 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Kuhl, P. K., Coffey-Corina, S., Padden, D. & Dawson, G. Links between social and linguistic processing of speech in preschool children with autism: behavioral and electrophysiological measures. Dev. Sci. 8, F1–F12 (2005).

    PubMed  Google Scholar 

  82. Whitehouse, A. J. & Bishop, D. V. Do children with autism 'switch off' to speech sounds? An investigation using event-related potentials. Dev. Sci. 11, 516–524 (2008).

    PubMed  Google Scholar 

  83. Feuerriegel, D., Churches, O., Hofmann, J. & Keage, H. A. The N170 and face perception in psychiatric and neurological disorders: a systematic review. Clin. Neurophysiol. 126, 1141–1158 (2015).

    PubMed  Google Scholar 

  84. Faja, S., Dawson, G., Aylward, E., Wijsman, E. M. & Webb, S. J. Early event-related potentials to emotional faces differ for adults with autism spectrum disorder and by serotonin transporter genotype. Clin. Neurophysiol. 127, 2436–2447 (2016).

    PubMed  PubMed Central  Google Scholar 

  85. Batty, M., Meaux, E., Wittemeyer, K., Roge, B. & Taylor, M. J. Early processing of emotional faces in children with autism: an event-related potential study. J. Exp. Child Psychol. 109, 430–444 (2011).

    PubMed  Google Scholar 

  86. McPartland, J., Dawson, G., Webb, S. J., Panagiotides, H. & Carver, L. J. Event-related brain potentials reveal anomalies in temporal processing of faces in autism spectrum disorder. J. Child Psychol. Psychiatry 45, 1235–1245 (2004).

    PubMed  Google Scholar 

  87. Dawson, G., Webb, S. J., Carver, L., Panagiotides, H. & McPartland, J. Young children with autism show atypical brain responses to fearful versus neutral facial expressions of emotion. Dev. Sci. 7, 340–359 (2004).

    PubMed  Google Scholar 

  88. Anderson, D. J. Optogenetics, sex, and violence in the brain: implications for psychiatry. Biol. Psychiatry 71, 1081–1089 (2012).

    PubMed  Google Scholar 

  89. Gunaydin, L. A. et al. Natural neural projection dynamics underlying social behavior. Cell 157, 1 535–1551 (2014). Characterization of single-unit neuronal activity that is associated with social cognition and is sufficient to drive social behaviour in mice.

    Google Scholar 

  90. Lin, D. et al. Functional identification of an aggression locus in the mouse hypothalamus. Nature 470, 221–226 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Lalumiere, R. T. Optogenetic dissection of amygdala functioning. Front. Behav. Neurosci. 8, 107 (2014).

    PubMed  PubMed Central  Google Scholar 

  92. Felix-Ortiz, A. C., Burgos-Robles, A., Bhagat, N. D., Leppla, C. A. & Tye, K. M. Bidirectional modulation of anxiety-related and social behaviors by amygdala projections to the medial prefrontal cortex. Neuroscience 321, 197–209 (2016).

    CAS  PubMed  Google Scholar 

  93. Seffer, D., Schwarting, R. K. & Wohr, M. Pro-social ultrasonic communication in rats: insights from playback studies. J. Neurosci. Methods 234, 73–81 (2014).

    PubMed  Google Scholar 

  94. Shepard, K. N., Lin, F. G., Zhao, C. L., Chong, K. K. & Liu, R. C. Behavioral relevance helps untangle natural vocal categories in a specific subset of core auditory cortical pyramidal neurons. J. Neurosci. 35, 2636–2645 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Bennur, S., Tsunada, J., Cohen, Y. E. & Liu, R. C. Understanding the neurophysiological basis of auditory abilities for social communication: a perspective on the value of ethological paradigms. Hear. Res. 305, 3–9 (2013).

    PubMed  Google Scholar 

  96. Marlin, B. J. & Froemke, R. C. Oxytocin modulation of neural circuits for social behavior. Dev. Neurobiol. http://dx.doi.org/10.1002/dneu.22452 (2016). Demonstration of single-unit and population neuronal activity in response to auditory social stimuli, and responsiveness of this activity to behaviourally relevant pharmacological manipulation.

  97. Oettl, L. L. et al. Oxytocin enhances social recognition by modulating cortical control of early olfactory processing. Neuron 90, 609–621 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Wohr, M. Effect of social odor context on the emission of isolation-induced ultrasonic vocalizations in the BTBR T+tf/J mouse model for autism. Front. Neurosci. 9, 73 (2015).

    PubMed  PubMed Central  Google Scholar 

  99. Wohr, M. Ultrasonic vocalizations in Shank mouse models for autism spectrum disorders: detailed spectrographic analyses and developmental profiles. Neurosci. Biobehav. Rev. 43, 199–212 (2014).

    PubMed  Google Scholar 

  100. Portfors, C. V. Types and functions of ultrasonic vocalizations in laboratory rats and mice. J. Am. Assoc. Lab. Anim. Sci. 46, 28–34 (2007).

    CAS  PubMed  Google Scholar 

  101. Kas, M. J., Modi, M. E., Saxe, M. D. & Smith, D. G. Advancing the discovery of medications for autism spectrum disorder using new technologies to reveal social brain circuitry in rodents. Psychopharmacology (Berl.) 231, 1147–1165 (2014).

    CAS  Google Scholar 

  102. Kazdoba, T. M. et al. Translational mouse models of autism: advancing toward pharmacological therapeutics. Curr. Top. Behav. Neurosci. 28, 1–52 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Davis, J. et al. Towards a classification of biomarkers of neuropsychiatric disease: from encompass to compass. Mol. Psychiatry 20, 152–153 (2015).

    CAS  PubMed  Google Scholar 

  104. Varcin, K. J. & Nelson, C. A. III. A developmental neuroscience approach to the search for biomarkers in autism spectrum disorder. Curr. Opin. Neurol. 29, 123–129 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. David, N. et al. Variability of cortical oscillation patterns: a possible endophenotype in autism spectrum disorders? Neurosci. Biobehav. Rev. 71, 590–600 (2016).

    PubMed  Google Scholar 

  106. Lovelace, J. W. et al. Matrix metalloproteinase-9 deletion rescues auditory evoked potential habituation deficit in a mouse model of fragile X syndrome. Neurobiol. Disord. 89, 126–135 (2016).

    CAS  Google Scholar 

  107. Cambiaghi, M. et al. Behavioural and EEG effects of chronic rapamycin treatment in a mouse model of tuberous sclerosis complex. Neuropharmacology 67, 1–7 (2013).

    CAS  PubMed  Google Scholar 

  108. Carlen, M. et al. BA critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior. Mol. Psychiatry 17, 537–548 (2012).

    CAS  PubMed  Google Scholar 

  109. Didriksen, M. et al. Persistent gating deficit and increased sensitivity to NMDA receptor antagonism after puberty in a new mouse model of the human 22q11.2 microdeletion syndrome: a study in male mice. J. Psychiatry Neurosci. 41, 150381 (2016).

    Google Scholar 

  110. Elsen, F. P. et al. GABAA-R alpha1 subunit knockin mutation leads to abnormal EEG and anesthetic-induced seizure-like activity in mice. Brain Res. 1078, 60–70 (2006).

    CAS  PubMed  Google Scholar 

  111. Liljelund, P., Handforth, A., Homanics, G. E. & Olsen, R. W. GABAA receptor beta3 subunit gene-deficient heterozygous mice show parent-of-origin and gender-related differences in beta3 subunit levels, EEG, and behavior. Res. Dev. Brain Res. 157, 1 50–161 (2005).

    Google Scholar 

  112. Buzsaki, G. & Draguhn, A. Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004).

    CAS  PubMed  Google Scholar 

  113. Herrmann, C. S., Struber, D., Helfrich, R. F. & Engel, A. K. EEG oscillations: from correlation to causality. Int. J. Psychophysiol. 103, 12–21 (2016).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr April Levin (Boston Children's Hospital, Massachusetts, USA) for critical reading of the manuscript and helpful discussions. The authors were supported by the Nancy Lurie Marks Family Foundation, the Boston Children's Hospital Translational Research Program NIH U01 NS082320 and the Developmental Synaptopathies Consortium (U54NS092090), which is a part of the National Center for Advancing Translational Sciences (NCATS). Rare Diseases Clinical Research Network (RDCRN) to M.S. RDCRN is an initiative of the Office of Rare Diseases Research, NCATS, funded through collaboration between NCATS, National Institute of Mental Health (NIMH), National Institute of Neurological Diseases and Stroke (NINDS), and National Institute of Child Health and Human Development (NICHD).

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to the preparation of the manuscript.

Corresponding author

Correspondence to Mustafa Sahin.

Ethics declarations

Competing interests

M.S. has received research support from Novartis, Pfizer, Roche and Shire, and is on the Scientific Advisory Board of Sage Pharmaceuticals. M.M. has received research support from Pfizer.

PowerPoint slides

Glossary

Coherence

The degree of association in phase of neural oscillations across brain regions; high coherence is associated with functional connectivity.

Auditory gating

Neural phenomenon evident in ERP and characterized by suppression of the P1 component of the evoked response to the second auditory stimulus in a pair, resulting from habituation to repetitive stimuli at a neuronal level.

Mismatch negativity

Neural phenomenon evident in ERPs as an increased negative deflection in response to a novel stimulus among trains of standard stimuli; mismatch negativity is calculated as the difference in wave responses to standard versus novel stimuli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Modi, M., Sahin, M. Translational use of event-related potentials to assess circuit integrity in ASD. Nat Rev Neurol 13, 160–170 (2017). https://doi.org/10.1038/nrneurol.2017.15

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2017.15

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research