Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Proton therapy for paediatric CNS tumours — improving treatment-related outcomes

Key Points

  • Radiotherapy is integral to the management of many paediatric CNS tumours, but exposes healthy tissue to unwanted radiation that leads to acute and long-term toxicities

  • Continued improvement in long-term survivorship of certain paediatric CNS tumours means that strategies to avoid radiotherapy-related toxicities can improve quality of life and overall functional status of survivors

  • Proton therapy reduces the unwanted, toxicity-associated low-to-intermediate radiation dose that healthy tissue receives in modern X-ray therapy

  • The improvement in dose distribution achieved with proton therapy can meaningfully affect the risk of long-term radiotherapy effects, such as secondary malignancy, cognitive toxicity, endocrinopathy, hearing loss and vasculopathic effects

  • Ongoing research aims to characterize the differential relative biological effectiveness of proton therapy, which has been suggested to increase the risk of imaging changes in susceptible structures, such as the brainstem

  • Despite its higher up-front costs, proton therapy has been shown to be more cost effective than X-ray therapy owing to the dramatic reduction in the excess costs of managing long-term toxicities

Abstract

Radiotherapy is an integral and highly effective aspect of the management of many paediatric CNS tumours, including embryonal tumours, astrocytic tumours and ependymal tumours. Nevertheless, continued improvements in long-term survivorship of such tumours means that radiotherapy-related toxicities that affect quality of life and overall functional status for survivors are increasingly problematic, and strategies that mitigate these adverse effects are needed. One such strategy is proton therapy, which has distinct advantages over conventional photon therapy and enables greater precision in the delivery of tumoricidal radiation doses with reduced irradiation of healthy tissues. These dose distribution advantages can translate into clinical benefits by reducing the risk of long-term adverse effects of radiotherapy, such as secondary malignancy, cognitive toxicity, endocrinopathy, hearing loss and vasculopathic effects. As the availability of proton therapy increases with the development of new proton centres, this treatment modality is increasingly being used in the management of paediatric CNS tumours. In this Review, we provide an introduction to the types of paediatric CNS tumours for which proton therapy can be considered, and discuss the available evidence that proton therapy limits toxicities and improves quality of life for patients. We will also consider uncertainties surrounding the use of proton therapy, evidence for its cost-effectiveness, and its future role in the management of paediatric CNS tumours.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: X-ray therapy versus proton therapy.
Figure 2: Proton therapy for posterior fossa WHO grade II ependymoma with extension of the tumour to the bilateral foramina of Luschka.
Figure 3: Craniospinal irradiation proton therapy for medulloblastoma.

Similar content being viewed by others

References

  1. Oeffinger, K. C. et al. Chronic health conditions in adult survivors of childhood cancer. N. Engl. J. Med. 355, 1572–1582 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Indelicato, D. & Chang, A. Pediatric proton therapy: patterns of care in 2013 across the United States [abstract 029]. Int. J. Part. Ther. 1, 772 (2014).

    Google Scholar 

  3. Freeman, C. R., Farmer, J.-P. & Taylor, R. E. Perez and Brady's Principles and Practice of Radiation Oncology (eds Halperin, E. C. et al.) (Lippincott Williams & Wilkins, 2013).

    Google Scholar 

  4. Ostrom, Q. T. et al. Alex's Lemonade Stand Foundation infant and childhood primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol. 16 (Suppl. 10), ×1–×36 (2015).

    PubMed  Google Scholar 

  5. Kohler, B. A. et al. Annual report to the nation on the status of cancer, 1975–2007, featuring tumors of the brain and other nervous system. J. Natl Cancer Inst. 103, 714–736 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Merchant, T. E. et al. Phase II trial of conformal radiation therapy for pediatric low-grade glioma. J. Clin. Oncol. 27, 3598–3604 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Merchant, T. E. et al. Phase II trial of conformal radiation therapy for pediatric patients with craniopharyngioma and correlation of surgical factors and radiation dosimetry with change in cognitive function. J. Neurosurg. 104, 94–102 (2006).

    PubMed  Google Scholar 

  8. Merchant, T. E. et al. Conformal radiotherapy after surgery for paediatric ependymoma: a prospective study. Lancet Oncol. 10, 258–266 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Aoyama, H. et al. Induction chemotherapy followed by low-dose involved-field radiotherapy for intracranial germ cell tumors. J. Clin. Oncol. 20, 857–865 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Mariotto, A. B. et al. Long-term survivors of childhood cancers in the United States. Cancer Epidemiol. Biomarkers Prev. 18, 1033–1040 (2009).

    Article  PubMed  Google Scholar 

  11. Bouffet, E. et al. M4 protocol for cerebellar medulloblastoma: supratentorial radiotherapy may not be avoided. Int. J. Radiat. Oncol. Biol. Phys. 24, 79–85 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Thomas, P. R. et al. Low-stage medulloblastoma: final analysis of trial comparing standard-dose with reduced-dose neuraxis irradiation. J. Clin. Oncol. 18, 3004–3011 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Packer, R. J. et al. Phase III study of craniospinal radiation therapy followed by adjuvant chemotherapy for newly diagnosed average-risk medulloblastoma. J. Clin. Oncol. 24, 4202–4208 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Packer, R. J. et al. Treatment of children with medulloblastomas with reduced-dose craniospinal radiation therapy and adjuvant chemotherapy: a Children's Cancer Group study. J. Clin. Oncol. 17, 2127–2136 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Duffner, P. K. et al. The treatment of malignant brain tumors in infants and very young children: an update of the Pediatric Oncology Group experience. Neuro Oncol. 1, 152–161 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Woehrer, A. et al. Incidence of atypical teratoid/rhabdoid tumors in children: a population-based study by the Austrian Brain Tumor Registry, 1996–2006. Cancer 116, 5725–5732 (2010).

    Article  PubMed  Google Scholar 

  17. Tekautz, T. M. et al. Atypical teratoid/rhabdoid tumors (ATRT): improved survival in children 3 years of age and older with radiation therapy and high-dose alkylator-based chemotherapy. J. Clin. Oncol. 23, 1491–1499 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Wisoff, J. H. et al. Primary neurosurgery for pediatric low-grade gliomas: a prospective multi-institutional study from the Children's Oncology Group. Neurosurgery 68, 1548–1554 (2011).

    Article  PubMed  Google Scholar 

  19. Saunders, D. E., Phipps, K. P., Wade, A. M. & Hayward, R. D. Surveillance imaging strategies following surgery and/or radiotherapy for childhood cerebellar low-grade astrocytoma. J. Neurosurg. 102, 172–178 (2005).

    Article  PubMed  Google Scholar 

  20. Goldwein, J. W. et al. Is craniospinal irradiation required to cure children with malignant (anaplastic) intracranial ependymomas? Cancer 67, 2766–2771 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Merchant, T. E., Haida, T., Wang, M. H., Finlay, J. L. & Leibel, S. A. Anaplastic ependymoma: treatment of pediatric patients with or without craniospinal radiation therapy. J. Neurosurg. 86, 943–949 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Timmermann, B. et al. Combined postoperative irradiation and chemotherapy for anaplastic ependymomas in childhood: results of the German prospective trials HIT 88/89 and HIT 91. Int. J. Radiat. Oncol. Biol. Phys. 46, 287–295 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Timmermann, B. et al. Role of radiotherapy in anaplastic ependymoma in children under age of 3 years: results of the prospective German brain tumor trials HIT-SKK 87 and 92. Radiother. Oncol. 77, 278–285 (2005).

    Article  PubMed  Google Scholar 

  24. van Veelen-Vincent, M. L. et al. Ependymoma in childhood: prognostic factors, extent of surgery, and adjuvant therapy. J. Neurosurg. 97, 827–835 (2002).

    Article  PubMed  Google Scholar 

  25. Duffner, P. K. et al. Prognostic factors in infants and very young children with intracranial ependymomas. Pediatr. Neurosurg. 28, 215–222 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Grill, J. et al. Postoperative chemotherapy without irradiation for ependymoma in children under 5 years of age: a multicenter trial of the French Society of Pediatric Oncology. J. Clin. Oncol. 19, 1288–1296 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Massimino, M. et al. Salvage treatment for childhood ependymoma after surgery only: pitfalls of omitting 'at once' adjuvant treatment. Int. J. Radiat. Oncol. Biol. Phys. 65, 1440–1445 (2006).

    Article  PubMed  Google Scholar 

  28. Massimino, M. et al. Infant ependymoma in a 10-year AIEOP (Associazione Italiana Ematologia Oncologia Pediatrica) experience with omitted or deferred radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 80, 807–814 (2011).

    Article  PubMed  Google Scholar 

  29. Merchant, T. E. et al. A phase II trial of conformal radiation therapy for pediatric patients with localized ependymoma, chemotherapy prior to second surgery for incompletely resected ependymoma, and observation for completely resected, differentiated, supratentorial ependymoma. Int. J. Radiat. Oncol. Biol. Phys. 93, S1 (2015).

    Article  Google Scholar 

  30. [No authors listed.] Prescribing, reporting and recording proton beam therapy. J ICRU 7, NP (2007).

  31. Eaton, B. R. et al. Clinical outcomes among children with standard-risk medulloblastoma treated with proton and photon radiation therapy: a comparison of disease control and overall survival. Int. J. Radiat. Oncol. Biol. Phys. 94, 133–138 (2016).

    Article  PubMed  Google Scholar 

  32. Mostow, E. N., Byrne, J., Connelly, R. R. & Mulvihill, J. J. Quality of life in long-term survivors of CNS tumors of childhood and adolescence. J. Clin. Oncol. 9, 592–599 (1991).

    Article  CAS  PubMed  Google Scholar 

  33. Robinson, K. E. et al. A quantitative meta-analysis of neurocognitive sequelae in survivors of pediatric brain tumors. Pediatr. Blood Cancer 55, 525–531 (2010).

    Article  PubMed  Google Scholar 

  34. Mulhern, R. K., Hancock, J., Fairclough, D. & Kun, L. Neuropsychological status of children treated for brain tumors: a critical review and integrative analysis. Med. Pediatr. Oncol. 20, 181–191 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Reddick, W. E. et al. A hybrid neural network analysis of subtle brain volume differences in children surviving brain tumors. Magn. Reson. Imaging 16, 413–421 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Walter, A. W. et al. Survival and neurodevelopmental outcome of young children with medulloblastoma at St. Jude Children's Research Hospital. J. Clin. Oncol. 17, 3720–3728 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Ris, M. D., Packer, R., Goldwein, J., Jones-Wallace, D. & Boyett, J. M. Intellectual outcome after reduced-dose radiation therapy plus adjuvant chemotherapy for medulloblastoma: a Children's Cancer Group study. J. Clin. Oncol. 19, 3470–3476 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Moxon-Emre, I. et al. Impact of craniospinal dose, boost volume, and neurologic complications on intellectual outcome in patients with medulloblastoma. J. Clin. Oncol. 32, 1760–1768 (2014).

    Article  PubMed  Google Scholar 

  39. Moxon-Emre, I. et al. Vulnerability of white matter to insult during childhood: evidence from patients treated for medulloblastoma. J. Neurosurg. Pediatr. 25, 1–12 (2016).

    Google Scholar 

  40. Duffner, P. K. Risk factors for cognitive decline in children treated for brain tumors. Eur. J. Paediatr. Neurol. 14, 106–115 (2010).

    Article  PubMed  Google Scholar 

  41. Padovani, L., Andre, N., Constine, L. S. & Muracciole, X. Neurocognitive function after radiotherapy for paediatric brain tumours. Nat. Rev. Neurol. 8, 578–588 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Palmer, S. L. et al. Processing speed, attention, and working memory after treatment for medulloblastoma: an international, prospective, and longitudinal study. J. Clin. Oncol. 31, 3494–3500 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Conklin, H. M. et al. Long-term efficacy of methylphenidate in enhancing attention regulation, social skills, and academic abilities of childhood cancer survivors. J. Clin. Oncol. 28, 4465–4472 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mulhern, R. K. et al. Risks of young age for selected neurocognitive deficits in medulloblastoma are associated with white matter loss. J. Clin. Oncol. 19, 472–479 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Fry, A. F. & Hale, S. Relationships among processing speed, working memory, and fluid intelligence in children. Biol. Psychol. 54, 1–34 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Mulhern, R. K. et al. Neurocognitive deficits in medulloblastoma survivors and white matter loss. Ann. Neurol. 46, 834–841 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Liu, A. K. et al. Changes in cerebral cortex of children treated for medulloblastoma. Int. J. Radiat. Oncol. Biol. Phys. 68, 992–998 (2007).

    Article  PubMed  Google Scholar 

  48. Gondi, V., Tome, W. A. & Mehta, M. P. Why avoid the hippocampus? A comprehensive review. Radiother. Oncol. 97, 370–376 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Redmond, K. J. et al. Association between radiation dose to neuronal progenitor cell niches and temporal lobes and performance on neuropsychological testing in children: a prospective study. Neuro Oncol. 15, 360–369 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Merchant, T. E. et al. Critical combinations of radiation dose and volume predict intelligence quotient and academic achievement scores after craniospinal irradiation in children with medulloblastoma. Int. J. Radiat. Oncol. Biol. Phys. 90, 554–561 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Merchant, T. E. et al. Proton versus photon radiotherapy for common pediatric brain tumors: comparison of models of dose characteristics and their relationship to cognitive function. Pediatr. Blood Cancer 51, 110–117 (2008).

    Article  PubMed  Google Scholar 

  52. Pulsifer, M. B. et al. Early cognitive outcomes following proton radiation in pediatric patients with brain and central nervous system tumors. Int. J. Radiat. Oncol. Biol. Phys. 93, 400–407 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Greenberger, B. A. et al. Clinical outcomes and late endocrine, neurocognitive, and visual profiles of proton radiation for pediatric low-grade gliomas. Int. J. Radiat. Oncol. Biol. Phys. 89, 1060–1068 (2014).

    Article  PubMed  Google Scholar 

  54. Yock, T. I. et al. Long-term toxic effects of proton radiotherapy for paediatric medulloblastoma: a phase 2 single-arm study. Lancet Oncol. 17, 287–298 (2016).

    Article  PubMed  Google Scholar 

  55. Kahalley, L. S. et al. Comparing intelligence quotient change after treatment with proton versus photon radiation therapy for pediatric brain tumors. J. Clin. Oncol. 34, 1043–1049 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Engelman, A. et al. Implications of pediatric brain radiotherapy: photons, protons, and the probability of requiring special education. [abstract] Int. J. Part. Ther. 2, 333 (2015).

    Google Scholar 

  57. Gurney, J. G. et al. Endocrine and cardiovascular late effects among adult survivors of childhood brain tumors: Childhood Cancer Survivor Study. Cancer 97, 663–673 (2003).

    Article  PubMed  Google Scholar 

  58. Darzy, K. H. & Shalet, S. M. Hypopituitarism following radiotherapy. Pituitary 12, 40–50 (2009).

    Article  PubMed  Google Scholar 

  59. Laughton, S. J. et al. Endocrine outcomes for children with embryonal brain tumors after risk-adapted craniospinal and conformal primary-site irradiation and high-dose chemotherapy with stem-cell rescue on the SJMB-96 trial. J. Clin. Oncol. 26, 1112–1118 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Ogilvy-Stuart, A. L. et al. Endocrine deficit after fractionated total body irradiation. Arch. Dis. Child. 67, 1107–1110 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Merchant, T. E. et al. Growth hormone secretion after conformal radiation therapy in pediatric patients with localized brain tumors. J. Clin. Oncol. 29, 4776–4780 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vatner, R. et al. Comparison of endocrine dysfunction and dosimetry in pediatric patients treated with proton versus photon radiation therapy for medulloblastoma. Int. J. Radiat. Oncol. Biol. Phys. 93, S32–S33 (2015).

    Article  Google Scholar 

  63. Macdonald, S. M. et al. Proton radiotherapy for pediatric central nervous system ependymoma: clinical outcomes for 70 patients. Neuro Oncol. 15, 1552–1559 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  64. De Amorim Bernstein, K. et al. Early clinical outcomes using proton radiation for children with central nervous system atypical teratoid rhabdoid tumors. Int. J. Radiat. Oncol. Biol. Phys. 86, 114–120 (2013).

    Article  PubMed  Google Scholar 

  65. Brinkman, T. M. et al. Treatment-induced hearing loss and adult social outcomes in survivors of childhood CNS and non-CNS solid tumors: results from the St. Jude Lifetime Cohort Study. Cancer 121, 4053–4061 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Bass, J. K. et al. Hearing loss in patients who received cranial radiation therapy for childhood cancer. J. Clin. Oncol. 34, 1248–1255 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hua, C., Bass, J. K., Khan, R., Kun, L. E. & Merchant, T. E. Hearing loss after radiotherapy for pediatric brain tumors: effect of cochlear dose. Int. J. Radiat. Oncol. Biol. Phys. 72, 892–899 (2008).

    Article  PubMed  Google Scholar 

  68. Merchant, T. E. et al. Early neuro-otologic effects of three-dimensional irradiation in children with primary brain tumors. Int. J. Radiat. Oncol. Biol. Phys. 58, 1194–1207 (2004).

    Article  PubMed  Google Scholar 

  69. Li, Y., Womer, R. B. & Silber, J. H. Predicting cisplatin ototoxicity in children: the influence of age and the cumulative dose. Eur. J. Cancer 40, 2445–2451 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Kretschmar, C. S., Warren, M. P., Lavally, B. L., Dyer, S. & Tarbell, N. J. Ototoxicity of preradiation cisplatin for children with central nervous system tumors. J. Clin. Oncol. 8, 1191–1198 (1990).

    Article  CAS  PubMed  Google Scholar 

  71. Moeller, B. J. et al. Low early ototoxicity rates for pediatric medulloblastoma patients treated with proton radiotherapy. Radiat. Oncol. 6, 58 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Jimenez, R. B. et al. Proton radiation therapy for pediatric medulloblastoma and supratentorial primitive neuroectodermal tumors: outcomes for very young children treated with upfront chemotherapy. Int. J. Radiat. Oncol. Biol. Phys. 87, 120–126 (2013).

    Article  PubMed  Google Scholar 

  73. Passos, J. et al. Late cerebrovascular complications after radiotherapy for childhood primary central nervous system tumors. Pediatr. Neurol. 53, 211–215 (2015).

    Article  PubMed  Google Scholar 

  74. Haddy, N. et al. Relationship between the brain radiation dose for the treatment of childhood cancer and the risk of long-term cerebrovascular mortality. Brain 134, 1362–1372 (2011).

    Article  PubMed  Google Scholar 

  75. Omura, M., Aida, N., Sekido, K., Kakehi, M. & Matsubara, S. Large intracranial vessel occlusive vasculopathy after radiation therapy in children: clinical features and usefulness of magnetic resonance imaging. Int. J. Radiat. Oncol. Biol. Phys. 38, 241–249 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Bowers, D. C. et al. Late-occurring stroke among long-term survivors of childhood leukemia and brain tumors: a report from the Childhood Cancer Survivor Study. J. Clin. Oncol. 24, 5277–5282 (2006).

    Article  PubMed  Google Scholar 

  77. Darby, S. C. et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N. Engl. J. Med. 368, 987–998 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. van Nimwegen, F. A. et al. Radiation dose–response relationship for risk of coronary heart disease in survivors of Hodgkin lymphoma. J. Clin. Oncol. 34, 235–243 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Jakacki, R. I., Goldwein, J. W., Larsen, R. L., Barber, G. & Silber, J. H. Cardiac dysfunction following spinal irradiation during childhood. J. Clin. Oncol. 11, 1033–1038 (1993).

    Article  CAS  PubMed  Google Scholar 

  80. Boehling, N. S. et al. Dosimetric comparison of three-dimensional conformal proton radiotherapy, intensity-modulated proton therapy, and intensity-modulated radiotherapy for treatment of pediatric craniopharyngiomas. Int. J. Radiat. Oncol. Biol. Phys. 82, 643–652 (2012).

    Article  PubMed  Google Scholar 

  81. Zhang, R. et al. A comparative study on the risks of radiogenic second cancers and cardiac mortality in a set of pediatric medulloblastoma patients treated with photon or proton craniospinal irradiation. Radiother. Oncol. 113, 84–88 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Armstrong, G. T. Long-term survivors of childhood central nervous system malignancies: the experience of the Childhood Cancer Survivor Study. Eur. J. Paediatr. Neurol. 14, 298–303 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Mertens, A. C. et al. Cause-specific late mortality among 5-year survivors of childhood cancer: the Childhood Cancer Survivor Study. J. Natl Cancer Inst. 100, 1368–1379 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Morris, E. B. et al. Survival and late mortality in long-term survivors of pediatric CNS tumors. J. Clin. Oncol. 25, 1532–1538 (2007).

    Article  PubMed  Google Scholar 

  85. Peterson, K. M., Shao, C., McCarter, R., MacDonald, T. J. & Byrne, J. An analysis of SEER data of increasing risk of secondary malignant neoplasms among long-term survivors of childhood brain tumors. Pediatr. Blood Cancer 47, 83–88 (2006).

    Article  PubMed  Google Scholar 

  86. Chung, C. S. et al. Incidence of second malignancies among patients treated with proton versus photon radiation. Int. J. Radiat. Oncol. Biol. Phys. 87, 46–52 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Moteabbed, M., Yock, T. I. & Paganetti, H. The risk of radiation-induced second cancers in the high to medium dose region: a comparison between passive and scanned proton therapy, IMRT and VMAT for pediatric patients with brain tumors. Phys. Med. Biol. 59, 2883–2899 (2014).

    Article  PubMed  Google Scholar 

  88. Yock, T. I. & Caruso, P. A. Risk of second cancers after photon and proton radiotherapy: a review of the data. Health Phys. 103, 577–585 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Yock, T. I. et al. Quality of life outcomes in proton and photon treated pediatric brain tumor survivors. Radiother. Oncol. 113, 89–94 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Mailhot Vega, R. B. et al. Cost effectiveness of proton therapy compared with photon therapy in the management of pediatric medulloblastoma. Cancer 119, 4299–4307 (2013).

    Article  PubMed  Google Scholar 

  91. Lundkvist, J., Ekman, M., Ericsson, S. R., Jonsson, B. & Glimelius, B. Proton therapy of cancer: potential clinical advantages and cost-effectiveness. Acta Oncol. 44, 850–861 (2005).

    Article  PubMed  Google Scholar 

  92. Mailhot Vega, R. et al. Cost effectiveness of proton versus photon radiation therapy with respect to the risk of growth hormone deficiency in children. Cancer 121, 1694–1702 (2015).

    Article  PubMed  Google Scholar 

  93. Paganetti, H. Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer. Phys. Med. Biol. 59, R419–R472 (2014).

    Article  PubMed  Google Scholar 

  94. Cuaron, J. J. et al. Exponential increase in relative biological effectiveness along distal edge of a proton Bragg peak as measured by deoxyribonucleic acid double-strand breaks. Int. J. Radiat. Oncol. Biol. Phys. 95, 62–69 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Gunther, J. R. et al. Imaging changes in pediatric intracranial ependymoma patients treated with proton beam radiation therapy compared to intensity modulated radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 93, 54–63 (2015).

    Article  PubMed  Google Scholar 

  96. Kralik, S. F. et al. Radiation necrosis in pediatric patients with brain tumors treated with proton radiotherapy. AJNR Am. J. Neuroradiol. 36, 1572–1578 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sabin, N. D. et al. Imaging changes in very young children with brain tumors treated with proton therapy and chemotherapy. AJNR Am. J. Neuroradiol. 34, 446–450 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Indelicato, D. J. et al. Incidence and dosimetric parameters of pediatric brainstem toxicity following proton therapy. Acta Oncol. 53, 1298–1304 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Buchsbaum, J. C. et al. Range modulation in proton therapy planning: a simple method for mitigating effects of increased relative biological effectiveness at the end-of-range of clinical proton beams. Radiat. Oncol. 9, 2 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Giantsoudi, D. et al. Incidence of CNS injury for a cohort of 111 patients treated with proton therapy for medulloblastoma: LET and RBE associations for areas of injury. Int. J. Radiat. Oncol. Biol. Phys. 95, 287–296 (2016).

    Article  PubMed  Google Scholar 

  101. Underwood, T. et al. Can we advance proton therapy for prostate? Considering alternative beam angles and relative biological effectiveness variations when comparing against intensity modulated radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 95, 454–464 (2016).

    Article  PubMed  Google Scholar 

  102. Polf, J. C., Chuong, M., Zhang, B. & Mehta, M. P. Anteriorly oriented beam arranges with daily in vivo range verification for proton therapy for prostate cancer: rectal toxicity rates. Int. J. Part. Ther. 2, 509–517 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Rosenblatt, E., Meghzifene, A., Belyakov, O. & Abdel-Wahab, M. Relevance of particle therapy to developing countries. Int. J. Radiat. Oncol. Biol. Phys. 95, 25–29 (2016).

    Article  PubMed  Google Scholar 

  104. Schlocker, A. J. & Corn, B. W. Proton beam therapy in small nations: financial irrationality or unique collaborative opportunity? Int. J. Radiat. Oncol. Biol. Phys. 95, 21–24 (2016).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data for the article, and provided substantial contribution to discussion of content, writing, reviewing and editing the article.

Corresponding author

Correspondence to Minesh P. Mehta.

Ethics declarations

Competing interests

V.G. has received speaking honoraria from prIME Oncology and US Oncology. None of these activities are related to this paper. M.P.M. has served as a consultant for BMS, Cavion, Celldex, Elekta, Novartis, Novocure and Roche; has previously held stock options in Pharmacyclics where he served on the Board of Directors; and has received research funding from Cellectar, NIH and Novocure. None of these activities are related to this paper. T.I.Y. declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gondi, V., Yock, T. & Mehta, M. Proton therapy for paediatric CNS tumours — improving treatment-related outcomes. Nat Rev Neurol 12, 334–345 (2016). https://doi.org/10.1038/nrneurol.2016.70

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2016.70

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer