The history and future of telestroke

Abstract

This Review focuses on the application of telemedicine to the care of patients with acute stroke (telestroke), from the prehospital setting through hospitalization. Telestroke has grown remarkably in the past decade and has entered mainstream care for patients with acute stroke. Telestroke enables such patients to be remotely evaluated, thereby allowing optimal treatment and management even in clinically underserved areas and removing geographical disparities in access to expert care. Telestroke systems enable thrombolytic treatment to be administered in community and rural hospitals, and facilitate the appropriate transfer of patients with complex conditions (who require critical care services and neurosurgical or intra-arterial interventions) to a comprehensive stroke centre. Decision-analytic models show that telestroke is cost-effective from both a societal and a hospital perspective. Limitations to the use of telestroke in the USA include the need for state licensing and credentialling of physicians, and the technical requirements of a minimum network bandwidth (which is still lacking in some regions). However, the opportunity exists for telestroke to become the backbone of an electronic stroke unit and to be used to identify and enrol patients in clinical trials of acute stroke treatment. The use of telestroke in the prehospital setting has been hampered by limited telecommunication availability, but these problems might be mitigated by fourth-generation cellular data networks.

Key Points

  • Telestroke networks have expanded in the past decade, enabling rural and community hospitals to administer tissue plasminogen activator to patients intravenously in a timely, safe and effective manner

  • Telestroke systems can also facilitate an electronic stroke unit, with ongoing follow-up and consultation by stroke specialists and nurse practitioners during the patient's hospitalization

  • Telestroke could improve the rate of recruitment and enrolment of under-represented populations of patients into clinical trials of acute stroke treatment

  • Telestroke is cost-effective from both societal and individual hospital perspectives

  • Barriers to telestroke implementation in the USA include the lack of nationwide credentialling and licensing programmes; the Center for Medicare Services has streamlined the credentialling process, but national licences are lacking

  • Telestroke is starting to move into the prehospital setting, but there are still technical barriers that might be mitigated by new fourth-generation cellular data networks

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Hub and spoke design for a telestroke network.
Figure 2: Role of telestroke in acute stroke treatment.
Figure 3: Different approaches to use of telestroke in prehospital stroke care.
Figure 4: Role of telestroke in clinical trials.

References

  1. 1

    Levine, S. R. & Gorman, M. “Telestroke”: the application of telemedicine for stroke. Stroke 30, 464–469 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. 2

    Lees, K. R. et al. Time to treatment with intravenous alteplase and outcome in stroke: an updated pooled analysis of ECASS, ATLANTIS, NINDS, and EPITHET trials. Lancet 375, 1695–1703 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Kleindorfer, D. et al. US geographic distribution of rt-PA utilization by hospital for acute ischemic stroke. Stroke 40, 3580–3584 (2009).

    Article  PubMed  Google Scholar 

  4. 4

    Silva, G. S., Farrell, S., Shandra, E., Viswanathan, A. & Schwamm, L. H. The status of telestroke in the United States: a survey of currently active stroke telemedicine programs. Stroke 43, 2078–2085 (2012).

    Article  Google Scholar 

  5. 5

    Pedragosa, A. et al. Impact of telemedicine on acute management of stroke patients undergoing endovascular procedures. Cerebrovasc. Dis. 34, 436–442 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. 6

    Switzer, J. A. et al. A telestroke network enhances recruitment into acute stroke clinical trials. Stroke 41, 566–569 (2010).

    Article  PubMed  Google Scholar 

  7. 7

    Audebert, H. J. et al. Effects of the implementation of a telemedical stroke network: the Telemedic Pilot Project for Integrative Stroke Care (TEMPiS) in Bavaria, Germany. Lancet Neurol. 5, 742–748 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8

    Switzer, J. A., Levine, S. R. & Hess, D. C. Telestroke 10 years later—'telestroke 2.0'. Cerebrovasc. Dis. 28, 323–330 (2009).

    Article  PubMed  Google Scholar 

  9. 9

    Audebert, H. J. et al. Is mobile teleconsulting equivalent to hospital-based telestroke services? Stroke 39, 3427–3430 (2008).

    Article  PubMed  Google Scholar 

  10. 10

    Wechsler, L. R. et al. Teleneurology applications: Report of the Telemedicine Work Group of the American Academy of Neurology. Neurology 80, 670–676 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11

    Rubin, M. N., Wellik, K. E., Channer, D. D. & Demaerschalk, B. M. Systematic review of teleneurology: methodology. Front. Neurol. 3, 156 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12

    Rubin, M. N., Wellik, K. E., Channer, D. D. & Demaerschalk, B. M. A systematic review of telestroke. Postgrad. Med. 125, 45–50 (2013).

    Article  PubMed  Google Scholar 

  13. 13

    Handschu, R. et al. Telemedicine in emergency evaluation of acute stroke: interrater agreement in remote video examination with a novel multimedia system. Stroke 34, 2842–2846 (2003).

    Article  PubMed  Google Scholar 

  14. 14

    Meyer, B. C., Raman, R., Chacon, M. R., Jensen, M. & Werner, J. D. Reliability of site-independent telemedicine when assessed by telemedicine-naive stroke practitioners. J. Stroke Cerebrovasc. Dis. 17, 181–186 (2008).

    Article  PubMed  Google Scholar 

  15. 15

    Wang, S. et al. Remote evaluation of acute ischemic stroke: reliability of National Institutes of Health Stroke Scale via telestroke. Stroke 34, e188–e191 (2003).

    PubMed  Google Scholar 

  16. 16

    Shafqat, S., Kvedar, J. C., Guanci, M. M., Chang, Y. & Schwamm, L. H. Role for telemedicine in acute stroke. Feasibility and reliability of remote administration of the NIH stroke scale. Stroke 30, 2141–2145 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. 17

    Schwamm, L. H. et al. A review of the evidence for the use of telemedicine within stroke systems of care: a scientific statement from the American Heart Association/American Stroke Association. Stroke 40, 2616–2634 (2009).

    Article  PubMed  Google Scholar 

  18. 18

    Demaerschalk, B. M. et al. Vascular neurology nurse practitioner provision of telemedicine consultations. Int. J. Telemed. Appl. 2010, 507071 (2010).

    PubMed  PubMed Central  Google Scholar 

  19. 19

    Meyer, B. C. et al. Prospective reliability of the STRokE DOC wireless/site independent telemedicine system. Neurology 64, 1058–1060 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. 20

    Gonzalez, M. A., Hanna, N., Rodrigo, M. E., Satler, L. F. & Waksman, R. Reliability of prehospital real-time cellular video phone in assessing the simplified National Institutes Of Health Stroke Scale in patients with acute stroke: a novel telemedicine technology. Stroke 42, 1522–1527 (2011).

    Article  PubMed  Google Scholar 

  21. 21

    Anderson, E. R., Smith, B., Ido, M. & Frankel, M. Remote assessment of stroke using the iPhone 4. J. Stroke Cerebrovasc. Dis. http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2011.09.013.

  22. 22

    Demaerschalk, B. M. et al. Reliability of real-time video smartphone for assessing National Institutes of Health stroke scale scores in acute stroke patients. Stroke 43, 3271–3277 (2012).

    Article  PubMed  Google Scholar 

  23. 23

    Schwamm, L. H. et al. Virtual TeleStroke support for the emergency department evaluation of acute stroke. Acad. Emerg. Med. 11, 1193–1197 (2004).

    Article  PubMed  Google Scholar 

  24. 24

    Wiborg, A. & Widder, B. Teleneurology to improve stroke care in rural areas: The Telemedicine in Stroke in Swabia (TESS) Project. Stroke 34, 2951–2956 (2003).

    Article  PubMed  Google Scholar 

  25. 25

    Hess, D. C. et al. REACH: clinical feasibility of a rural telestroke network. Stroke 36, 2018–2020 (2005).

    Article  PubMed  Google Scholar 

  26. 26

    Wang, S. et al. Remote evaluation of acute ischemic stroke in rural community hospitals in Georgia. Stroke 35, 1763–1768 (2004).

    Article  PubMed  Google Scholar 

  27. 27

    Audebert, H. J. et al. Telemedicine for safe and extended use of thrombolysis in stroke: the Telemedic Pilot Project for Integrative Stroke Care (TEMPiS) in Bavaria. Stroke 36, 287–291 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Sairanen, T. et al. Two years of Finnish Telestroke: thrombolysis at spokes equal to that at the hub. Neurology 76, 1145–1152 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. 29

    Switzer, J. A. et al. A web-based telestroke system facilitates rapid treatment of acute ischemic stroke patients in rural emergency departments. J. Emerg. Med. 36, 12–18 (2009).

    Article  PubMed  Google Scholar 

  30. 30

    Meyer, B. C. et al. Efficacy of site-independent telemedicine in the STRokE DOC trial: a randomised, blinded, prospective study. Lancet Neurol. 7, 787–795 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Demaerschalk, B. M., Raman, R., Ernstrom, K. & Meyer, B. C. Efficacy of telemedicine for stroke: pooled analysis of the Stroke Team Remote Evaluation Using a Digital Observation Camera (STRokE DOC) and STRokE DOC Arizona telestroke trials. Telemed. J. E Health 18, 230–237 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32

    Johnston, K. C. & Worrall, B. B. Teleradiology Assessment of Computerized Tomographs Online Reliability Study (TRACTORS) for acute stroke evaluation. Telemed. J. E Health 9, 227–233 (2003).

    Article  PubMed  Google Scholar 

  33. 33

    Puetz, V. et al. Reliability of brain CT evaluation by stroke neurologists in telemedicine. Neurology 80, 332–338 (2013).

    Article  PubMed  Google Scholar 

  34. 34

    Demaerschalk, B. M. et al. CT interpretation in a telestroke network: agreement among a spoke radiologist, hub vascular neurologist, and hub neuroradiologist. Stroke 43, 3095–3097 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35

    Jauch, E. C. et al. Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 44, 870–947 (2013).

    Article  PubMed  Google Scholar 

  36. 36

    Audebert, H. J. et al. Long-term effects of specialized stroke care with telemedicine support in community hospitals on behalf of the Telemedical Project for Integrative Stroke Care (TEMPiS). Stroke 40, 902–908 (2009).

    Article  PubMed  Google Scholar 

  37. 37

    McConnell, K. J. et al. The on-call crisis: a statewide assessment of the costs of providing on-call specialist coverage. Ann. Emerg. Med. 49, 727–733 (2007).

    Article  PubMed  Google Scholar 

  38. 38

    Rudkin, S. E. et al. The worsening of ED on-call coverage in California: 6-year trend. Am. J. Emerg. Med. 27, 785–791 (2009).

    Article  PubMed  Google Scholar 

  39. 39

    Josephson, S. A., Engstrom, J. W. & Wachter, R. M. Neurohospitalists: an emerging model for inpatient neurological care. Ann. Neurol. 63, 135–140 (2008).

    Article  PubMed  Google Scholar 

  40. 40

    Vatankhah, B., Schenkel, J., Furst, A., Haberl, R. L. & Audebert, H. J. Telemedically provided stroke expertise beyond normal working hours. The Telemedical Project for Integrative Stroke Care. Cerebrovasc. Dis. 25, 332–337 (2008).

    Article  PubMed  Google Scholar 

  41. 41

    [No authors listed] The Joint Commission reports high interest in new certification program for Comprehensive Stroke Centers. ED Manag. 24, 127–129 (2012).

  42. 42

    Alberts, M. J. et al. Recommendations for comprehensive stroke centers: a consensus statement from the Brain Attack Coalition. Stroke 36, 1597–1616 (2005).

    Article  PubMed  Google Scholar 

  43. 43

    Riedel, C. H. et al. The importance of size: successful recanalization by intravenous thrombolysis in acute anterior stroke depends on thrombus length. Stroke 42, 1775–1777 (2011).

    Article  PubMed  Google Scholar 

  44. 44

    Audebert, H. J. et al. Can. telemedicine contribute to fulfill WHO Helsingborg Declaration of specialized stroke care? Cerebrovasc. Dis. 20, 362–369 (2005).

    Article  PubMed  Google Scholar 

  45. 45

    Schwamm, L. H. et al. Recommendations for the implementation of telemedicine within stroke systems of care: a policy statement from the American Heart Association. Stroke 40, 2635–2660 (2009).

    Article  PubMed  Google Scholar 

  46. 46

    Chowdhury, M., Birns, J., Rudd, A. & Bhalla, A. Telemedicine versus face-to-face evaluation in the delivery of thrombolysis for acute ischaemic stroke: a single centre experience. Postgrad. Med. J. 88, 134–137 (2012).

    Article  PubMed  Google Scholar 

  47. 47

    Hargroves, D. Will telemedicine facilitate access to hyper acute stroke care across the UK? Br. J. Hosp. Med. (Lond.) 73, 155–159 (2012).

    Article  Google Scholar 

  48. 48

    Stroke Unit Trialist's Collaboration. Organised inpatient (stroke unit) care for stroke. Cochrane Database of Systematic Reviews, Issue 4. Art. No.: CD000197. http://dx.doi.org/10.1002/14651858.CDCD000197.pub2.

  49. 49

    Hess, D. C. & Switzer, J. A. Stroke telepresence: removing all geographic barriers. Neurology 76, 1121–1123 (2011).

    Article  PubMed  Google Scholar 

  50. 50

    Meretoja, A. et al. Reducing in-hospital delay to 20 minutes in stroke thrombolysis. Neurology 79, 306–313 (2012).

    Article  PubMed  Google Scholar 

  51. 51

    Walter, S. et al. Point-of-care laboratory halves door-to-therapy-decision time in acute stroke. Ann. Neurol. 69, 581–586 (2011).

    Article  PubMed  Google Scholar 

  52. 52

    Kohrmann, M. et al. Avoiding in hospital delays and eliminating the three-hour effect in thrombolysis for stroke. Int. J. Stroke 6, 493–497 (2011).

    Article  PubMed  Google Scholar 

  53. 53

    Bray, J. E. et al. Paramedic identification of stroke: community validation of the melbourne ambulance stroke screen. Cerebrovasc. Dis. 20, 28–33 (2005).

    Article  PubMed  Google Scholar 

  54. 54

    Kidwell, C. S., Starkman, S., Eckstein, M., Weems, K. & Saver, J. L. Identifying stroke in the field. Prospective validation of the Los Angeles prehospital stroke screen (LAPSS). Stroke 31, 71–76 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. 55

    Kothari, R. U., Pancioli, A., Liu, T., Brott, T. & Broderick, J. Cincinnati Prehospital Stroke Scale: reproducibility and validity. Ann. Emerg. Med. 33, 373–378 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. 56

    Harbison, J. et al. Diagnostic accuracy of stroke referrals from primary care, emergency room physicians, and ambulance staff using the face arm speech test. Stroke 34, 71–76 (2003).

    Article  PubMed  Google Scholar 

  57. 57

    Nazliel, B. et al. A brief prehospital stroke severity scale identifies ischemic stroke patients harboring persisting large arterial occlusions. Stroke 39, 2264–2267 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  58. 58

    Whelley-Wilson, C. M. & Newman, G. C. A stroke scale for emergency triage. J. Stroke Cerebrovasc. Dis. 13, 247–253 (2004).

    Article  PubMed  Google Scholar 

  59. 59

    Llanes, J. N. et al. The Los Angeles Motor Scale (LAMS): a new measure to characterize stroke severity in the field. Prehosp. Emerg. Care 8, 46–50 (2004).

    Article  PubMed  Google Scholar 

  60. 60

    Tirschwell, D. L. et al. Shortening the NIH Stroke scale for use in the prehospital setting. Stroke 33, 2801–2806 (2002).

    Article  PubMed  Google Scholar 

  61. 61

    McKinney, J. S. et al. Hospital prenotification of stroke patients by emergency medical services improves stroke time targets. J. Stroke Cerebrovasc. Dis. 22, 113–118 (2013).

    Article  PubMed  Google Scholar 

  62. 62

    Ziegler, V. et al. Mobile computing systems in preclinical care of stroke. Results of the Stroke Angel initiative within the BMBF project PerCoMed. Anaesthesist 57, 677–685 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. 63

    Berglund, A. et al. Higher prehospital priority level of stroke improves thrombolysis frequency and time to stroke unit: the Hyper Acute STroke Alarm (HASTA) study. Stroke 43, 2666–2670 (2012).

    Article  PubMed  Google Scholar 

  64. 64

    Lin, C. B. et al. Emergency medical service hospital prenotification is associated with improved evaluation and treatment of acute ischemic stroke. Circ. Cardiovasc. Qual. Outcomes 5, 514–522 (2012).

    Article  PubMed  Google Scholar 

  65. 65

    LaMonte, M. P. et al. Shortening time to stroke treatment using ambulance telemedicine: TeleBAT. J. Stroke Cerebrovasc. Dis. 13, 148–154 (2004).

    Article  PubMed  Google Scholar 

  66. 66

    Liman, T. G. et al. Telestroke ambulances in prehospital stroke management: concept and pilot feasibility study. Stroke 43, 2086–2090 (2012).

    Article  PubMed  Google Scholar 

  67. 67

    Bergrath, S. et al. Feasibility of prehospital teleconsultation in acute stroke–a pilot study in clinical routine. PLoS ONE 7, e36796 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Walter, S. et al. Diagnosis and treatment of patients with stroke in a mobile stroke unit versus in hospital: a randomised controlled trial. Lancet Neurol. 11, 397–404 (2012).

    Article  PubMed  Google Scholar 

  69. 69

    Weber, J. E. et al. Prehospital thrombolysis in acute stroke: results of the PHANTOM-S pilot study. Neurology 80, 163–168 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. 70

    Ramanujam, P. et al. Accuracy of stroke recognition by emergency medical dispatchers and paramedics--San Diego experience. Prehosp. Emerg. Care 12, 307–313 (2008).

    Article  PubMed  Google Scholar 

  71. 71

    Govindarajan, P. et al. Comparative evaluation of stroke triage algorithms for emergency medical dispatchers (MeDS): prospective cohort study protocol. BMC Neurol. 11, 14 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  72. 72

    Krebes, S. et al. Development and validation of a dispatcher identification algorithm for stroke emergencies. Stroke 43, 776–781 (2012).

    Article  PubMed  Google Scholar 

  73. 73

    Gierhake, D. et al. Mobile CT: technical aspects of prehospital stroke imaging before intravenous thrombolysis [German]. Rofo 185, 55–59 (2013).

    CAS  PubMed  Google Scholar 

  74. 74

    Schwamm, L. H. & Starkman, S. Have CT—will travel: to boldly go where no scan has gone before. Neurology 80, 130–131 (2013).

    Article  PubMed  Google Scholar 

  75. 75

    Lai, F. Stroke networks based on robotic telepresence. J. Telemed. Telecare 15, 135–136 (2009).

    Article  PubMed  Google Scholar 

  76. 76

    Ehlers, L., Muskens, W. M., Jensen, L. G., Kjolby, M. & Andersen, G. National use of thrombolysis with alteplase for acute ischaemic stroke via telemedicine in Denmark: a model of budgetary impact and cost effectiveness. CNS Drugs 22, 73–81 (2008).

    Article  PubMed  Google Scholar 

  77. 77

    Nelson, R. E., Saltzman, G. M., Skalabrin, E. J., Demaerschalk, B. M. & Majersik, J. J. The cost-effectiveness of telestroke in the treatment of acute ischemic stroke. Neurology 77, 1590–1598 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Switzer, J. A. et al. Cost-effectiveness of hub-and-spoke telestroke networks for the management of acute ischemic stroke from the hospitals' perspectives. Circ. Cardiovasc. Qual. Outcomes 6, 18–26 (2013).

    Article  PubMed  Google Scholar 

  79. 79

    Schenkel, J. et al. Cost analysis of telemedical treatment of stroke [German]. Gesundheitswesen http://dx.doi.org/10.1055/s-0032-1321779.

  80. 80

    Elkins, J. S., Khatabi, T., Fung, L., Rootenberg, J. & Johnston, S. C. Recruiting subjects for acute stroke trials: a meta-analysis. Stroke 37, 123–128 (2006).

    Article  PubMed  Google Scholar 

  81. 81

    Zerhouni, E. Medicine. The NIH roadmap. Science 302, 63–72 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. 82

    Sanossian, N. et al. Simultaneous ring voice-over-Internet phone system enables rapid physician elicitation of explicit informed consent in prehospital stroke treatment trials. Cerebrovasc. Dis. 28, 539–544 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  83. 83

    Owolabi, M. O. Taming the burgeoning stroke epidemic in Africa: stroke quadrangle to the rescue. West Indian Med. J. 60, 412–421 (2011).

    CAS  PubMed  Google Scholar 

  84. 84

    Schwarz, H., Marpe, D, & Wiegand, T. Overview of the scalable video coding extension of the H.264/AVC standard. IEEE Trans. Circuits Systems Video Technol. 17, 1103–1120 (2007).

    Article  Google Scholar 

  85. 85

    Switzer, J. A. & Demaerschalk, B. M. Overcoming challenges to sustain a telestroke network. J. Stroke Cerebrovasc. Dis. 21, 535–540 (2012).

    Article  PubMed  Google Scholar 

  86. 86

    Center for Medicaid, CHIP, and Survey & Certification/Survey & Certification Group. Telemedicine services in hospitals and critical access hospitals (CAHs). Centers for Medicare & Medicaid services [online], (2013).

  87. 87

    Liang, B. A. & Zivin, J. A. Empirical characteristics of litigation involving tissue plasminogen activator and ischemic stroke. Ann. Emerg. Med. 52, 160–164 (2008).

    Article  PubMed  Google Scholar 

  88. 88

    Liang, B. A., Lew, R. & Zivin, J. A. Review of tissue plasminogen activator, ischemic stroke, and potential legal issues. Arch. Neurol. 65, 1429–1433 (2008).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

H. J. Audebert acknowledges funding for the Telemedicine Project for Integrative Stroke Care (TEMPiS) network from Bavarian Health Insurance, Bavarian Ministry for Social Affairs, the German Foundation for Stroke Aid and the German Federal Ministry of Education and Research (BMBF), as well as funding for the Stroke Emergency Unit Mobile (STEMO) project from Zukunftsfonds Berlin and the Federal Ministry of Education and Research, via grant number 01 EO 0801 from the Center for Stroke Research, Berlin, Germany.

Author information

Affiliations

Authors

Contributions

D. C. Hess and H. J. Audebert contributed equally to discussion of content for the article, researching data to include in the manuscript, and writing, reviewing and editing of the manuscript before submission.

Corresponding author

Correspondence to David C. Hess.

Ethics declarations

Competing interests

D. C. Hess is a co-founder of and equity holder in REACH Health, a telestroke and telemedicine company. He is a member of the Board of Directors of REACH Health, but does not receive compensation for this role and does not receive compensation from the company. H. J. Audebert has received honoraria for acting as a speaker and/or consultant from Bayer Vital, Boehringer Ingelheim, Bristol–Myers Squibb, Lundbeck, Pfizer, Sanofi–Synthélabo, Takeda Pharmaceuticals, and UCB.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hess, D., Audebert, H. The history and future of telestroke. Nat Rev Neurol 9, 340–350 (2013). https://doi.org/10.1038/nrneurol.2013.86

Download citation

Further reading