Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Treatment trials in progressive MS—current challenges and future directions

Abstract

The introduction of immunomodulatory treatments has transformed the management of patients with relapsing–remitting multiple sclerosis (MS), but has had no consistent benefit in progressive MS. Patients with primary or secondary progressive MS, therefore, are faced with relentless functional decline that remains without treatment. Clinical trials in progressive MS are clearly needed, but their design and conduct is challenging, and different from that of trials in relapsing–remitting MS. Challenges to reliable measurement of clinical progression, uncertainties about the natural history of progressive MS, and the unclear role of imaging outcomes all impede optimal trial design. Clinical trials in progressive MS have used time to a predefined change on the Expanded Disability Status Scale as their main outcome measure, which has had important consequences for trial duration and has led to inclusion of only a highly selected minority of patients. Here, we review the current approach to clinical trial design in progressive MS, outline key ongoing challenges, and suggest strategies to overcome such hurdles.

Key Points

  • During the course of multiple sclerosis, most patients are affected by a progressive disease course (PMS), for which effective treatments are lacking

  • Treatment targets in PMS are speculative, but could include remyelination, cytoprotection and inhibition of microglial activation

  • Reliable measurement of clinical progression in PMS is challenging, and alternatives to the current outcome measure of change on the Expanded Disability Status Scale are needed

  • Brain atrophy measured on MRI is an attractive potential trial outcome, but its relationship to disease progression remains to be established

  • Stringent inclusion criteria used in current trials in PMS lead to exclusion of the majority of patients with PMS

  • New trial models, such as adaptive and seamless phase II–III designs and the Simon-2-stage model, could help to accelerate development of treatments for PMS

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Key pathological differences between RRMS and PMS.
Figure 2: Possible strategies for the treatment of progressive multiple sclerosis include neuroprotection and myelin repair.

Similar content being viewed by others

References

  1. Compston, A. & Coles, A. Multiple sclerosis. Lancet 359, 1221–1231 (2002).

    Article  PubMed  Google Scholar 

  2. Miller, D. H. & Leary, S. M. Primary-progressive multiple sclerosis. Lancet Neurol. 6, 903–912 (2007).

    Article  PubMed  Google Scholar 

  3. Rovaris, M. et al. Secondary progressive multiple sclerosis: current knowledge and future challenges. Lancet Neurol. 5, 343–354 (2006).

    Article  PubMed  Google Scholar 

  4. [No authors listed]. Randomised double-blind placebo-controlled study of interferon β-1a in relapsing/remitting multiple sclerosis. PRISMS (Prevention of Relapses and Disability by Interferon β-1a Subcutaneously in Multiple Sclerosis) Study Group. Lancet 352, 1498–1504 (1998).

  5. [No authors listed]. Placebo-controlled multicentre randomised trial of interferon β-1b in treatment of secondary progressive multiple sclerosis. European Study Group on interferon β-1b in secondary progressive MS. Lancet 352, 1491–1497 (1998).

  6. Johnson, K. P. et al. Copolymer 1 reduces relapse rate and improves disability in relapsing–remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. The Copolymer 1 Multiple Sclerosis Study Group. Neurology 45, 1268–1276 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Polman, C. H. et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med. 354, 899–910 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Killestein, J., Rudick, R. A. & Polman, C. H. Oral treatment for multiple sclerosis. Lancet Neurol. 10, 1026–1034 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Meuth, S. G., Göbel, K. & Wiendl, H. Immune therapy of multiple sclerosis—future strategies. Curr. Pharm. Des. 18, 4489–4497 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. La Mantia, L., Munari, L. M. & Lovati, R. Glatiramer acetate for multiple sclerosis. Cochrane Database of Systematic Reviews, Issue 12. Art No.: CD004678. http://dx.doi.org/10.1002/14651858.CD004678.pub2.

  11. La Mantia, L. et al. Interferon beta for secondary progressive multiple sclerosis. Cochrane Database of Systematic Reviews, Issue 1. Art. No.: CD005181. http://dx.doi.org/10.1002/14651858.CD005181.pub3.

  12. Bjartmar, C., Wujek, J. R. & Trapp, B. D. Axonal loss in the pathology of MS: consequences for understanding the progressive phase of the disease. J. Neurol. Sci. 206, 165–171 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Bjartmar, C. & Trapp, B. D. Axonal degeneration and progressive neurologic disability in multiple sclerosis. Neurotox. Res. 5, 157–164 (2003).

    Article  PubMed  Google Scholar 

  14. Antel, J., Antel, S., Caramanos, Z., Arnold, D. L. & Kuhlmann, T. Primary progressive multiple sclerosis: part of the MS disease spectrum or separate disease entity? Acta Neuropathol. 123, 627–638 (2012).

    Article  PubMed  Google Scholar 

  15. Kutzelnigg, A. et al. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128, 2705–2712 (2005).

    Article  PubMed  Google Scholar 

  16. Lassmann, H., Van Horssen, J. & Mahad, D. Progressive multiple sclerosis: pathology and pathogenesis. Nat. Rev. Neurol. 8, 647–656 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Calabrese, M. et al. Cortical lesion load associates with progression of disability in multiple sclerosis. Brain 135, 2952–2961 (2012).

    Article  PubMed  Google Scholar 

  18. Kurtzke, J. F. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33, 1444–1452 (1983).

    Article  CAS  PubMed  Google Scholar 

  19. Leray, E. et al. Evidence for a two-stage disability progression in multiple sclerosis. Brain 133, 1900–1913 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Scalfari, A. et al. The natural history of multiple sclerosis, a geographically based study 10: relapses and long-term disability. Brain 133, 1914–1929 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Confavreux, C., Vukusic, S. & Adeleine, P. Early clinical predictors and progression of irreversible disability in multiple sclerosis: an amnesic process. Brain 126, 770–782 (2003).

    Article  PubMed  Google Scholar 

  22. Prineas, J. W. et al. Immunopathology of secondary-progressive multiple sclerosis. Ann. Neurol. 50, 646–657 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Jackson, S. J., Giovannoni, G. & Baker, D. Fingolimod modulates microglial activation to augment markers of remyelination. J. Neuroinflammation 8, 76 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brück, W. et al. Reduced astrocytic NF-κB activation by laquinimod protects from cuprizone-induced demyelination. Acta Neuropathol. 124, 411–424 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wilms, H. et al. Dimethylfumarate inhibits microglial and astrocytic inflammation by suppressing the synthesis of nitric oxide, IL-1β, TNF-α and IL-6 in an in-vitro model of brain inflammation. J. Neuroinflammation 7, 30 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yong, V. W. et al. The promise of minocycline in neurology. Lancet Neurol. 3, 744–751 (2004).

    Article  PubMed  Google Scholar 

  27. Nikolakopoulou, A. M., Dutta, R., Chen, Z., Miller, R. H. & Trapp, B. D. Activated microglia enhance neurogenesis via trypsinogen secretion. Proc. Natl Acad. Sci. USA http://dx.doi.org/10.1073/pnas.1218856110.

  28. Gonsette, R. E. Neurodegeneration in multiple sclerosis: the role of oxidative stress and excitotoxicity. J. Neurol. Sci. 274, 48–53 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Salter, M. G. & Fern, R. NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury. Nature 438, 1167–1171 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Micu, I. et al. NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia. Nature 439, 988–992 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Ouardouz, M. et al. Glutamate receptors on myelinated spinal cord axons: II. AMPA and GluR5 receptors. Ann. Neurol. 65, 160–166 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Irvine, K. A. & Blakemore, W. F. Remyelination protects axons from demyelination-associated axon degeneration. Brain 131, 1464–1477 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Rudick, R. A., Mi, S. & Sandrock, A. W. Jr. LINGO-1 antagonists as therapy for multiple sclerosis: in vitro and in vivo evidence. Expert. Opin. Biol. Ther. 8, 1561–1570 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Keough, M. B. & Yong, V. W. Remyelination therapy for multiple sclerosis. Neurotherapeutics 10, 44–54 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Madeddu, R. et al. Cytoskeletal proteins in the cerebrospinal fluid as biomarker of multiple sclerosis. Neurol. Sci. 34, 181–186 (2013).

    Article  PubMed  Google Scholar 

  36. Koch, M. W., Metz, L. M. & Kovalchuk, O. Epigenetic changes in patients with multiple sclerosis. Nat. Rev. Neurol. 9, 35–43 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Koch, M. W., Metz, L. M. & Kovalchuk, O. Epigenetics and miRNAs in the diagnosis and treatment of multiple sclerosis. Trends Mol. Med. 19, 23–30 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Noorbakhsh, F. et al. Impaired neurosteroid synthesis in multiple sclerosis. Brain 134, 2703–2721 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rajasekharan, S. & Bar-Or, A. From bench to MS bedside: challenges translating biomarker discovery to clinical practice. J. Neuroimmunol. 248, 66–72 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Wolinsky, J. S. et al. Glatiramer acetate in primary progressive multiple sclerosis: results of a multinational, multicenter, double-blind, placebo-controlled trial. Ann. Neurol. 61, 14–24 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Hommes, O. R. et al. Intravenous immunoglobulin in secondary progressive multiple sclerosis: randomised placebo-controlled trial. Lancet 364, 1149–1156 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Panitch, H., Miller, A., Paty, D. & Weinshenker, B. Interferon β-1b in secondary progressive MS: results from a 3-year controlled study. Neurology 63, 1788–1795 (2004).

    Article  PubMed  Google Scholar 

  43. Secondary Progressive Efficacy Clinical Trial of Recombinant Interferon-Beta-1a in MS (SPECTRIMS) Study Group. Randomized controlled trial of interferon- beta-1a in secondary progressive MS: Clinical results. Neurology 56, 1496–1504 (2001).

  44. Bosma, L. V. et al. The search for responsive clinical endpoints in primary progressive multiple sclerosis. Mult. Scler. 15, 715–720 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Ontaneda, D., Larocca, N., Coetzee, T. & Rudick, R. Revisiting the Multiple Sclerosis Functional Composite: proceedings from the National Multiple Sclerosis Society (NMSS) Task Force on Clinical Disability Measures. Mult. Scler. 18, 1074–1080 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Amato, M. P., Fratiglioni, L., Groppi, C., Siracusa, G. & Amaducci, L. Interrater reliability in assessing functional systems and disability on the Kurtzke scale in multiple sclerosis. Arch. Neurol. 45, 746–748 (1988).

    Article  CAS  PubMed  Google Scholar 

  47. Francis, D. A., Bain, P., Swan, A. V. & Hughes, R. A. An assessment of disability rating scales used in multiple sclerosis. Arch. Neurol. 48, 299–301 (1991).

    Article  CAS  PubMed  Google Scholar 

  48. Noseworthy, J. H., Vandervoort, M. K., Wong, C. J. & Ebers, G. C. Interrater variability with the Expanded Disability Status Scale (EDSS) and Functional Systems (FS) in a multiple sclerosis clinical trial. The Canadian Cooperation MS Study Group. Neurology 40, 971–975 (1990).

    Article  CAS  PubMed  Google Scholar 

  49. Weinshenker, B. G. et al. The natural history of multiple sclerosis: a geographically based study. 4. Applications to planning and interpretation of clinical therapeutic trials. Brain 114, 1057–1067 (1991).

    Article  PubMed  Google Scholar 

  50. Cohen, J. A. et al. Benefit of interferon β-1a on MSFC progression in secondary progressive MS. Neurology 59, 679–687 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Cutter, G. R. et al. Development of a multiple sclerosis functional composite as a clinical trial outcome measure. Brain 122, 871–882 (1999).

    Article  PubMed  Google Scholar 

  52. Kapoor, R. et al. Lamotrigine for neuroprotection in secondary progressive multiple sclerosis: a randomised, double-blind, placebo-controlled, parallel-group trial. Lancet Neurol. 9, 681–688 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Hoogervorst, E. L. et al. Comparisons of patient self-report, neurologic examination, and functional impairment in MS. Neurology 56, 934–937 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Hoogervorst, E. L., Kalkers, N. F., Cutter, G. R., Uitdehaag, B. M. & Polman, C. H. The patient's perception of a (reliable) change in the Multiple Sclerosis Functional Composite. Mult. Scler. 10, 55–60 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Miller, D. M., Rudick, R. A., Cutter, G., Baier, M. & Fischer, J. S. Clinical significance of the Multiple Sclerosis Functional Composite: relationship to patient-reported quality of life. Arch. Neurol. 57, 1319–1324 (2000).

    CAS  PubMed  Google Scholar 

  56. Solari, A., Radice, D., Manneschi, L., Motti, L. & Montanari, E. The Multiple Sclerosis Functional Composite: different practice effects in the three test components. J. Neurol. Sci. 228, 71–74 (2005).

    Article  PubMed  Google Scholar 

  57. Schwid, S. R., Goodman, A. D., McDermott, M. P., Bever, C. F. & Cook, S. D. Quantitative functional measures in MS: what is a reliable change? Neurology 58, 1294–1296 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Bosma, L. V. et al. Progression on the Multiple Sclerosis Functional Composite in multiple sclerosis: what is the optimal cut-off for the three components? Mult. Scler. 16, 862–867 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Kragt, J. J., van der Linden, F. A., Nielsen, J. M., Uitdehaag, B. M. & Polman, C. H. Clinical impact of 20% worsening on Timed 25-foot Walk and 9-hole Peg Test in multiple sclerosis. Mult. Scler. 12, 594–598 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Polman, C. H. & Rudick, R. A. The multiple sclerosis functional composite: a clinically meaningful measure of disability. Neurology 74 (Suppl. 3), S8–S15 (2010).

    Article  PubMed  Google Scholar 

  61. Tombaugh, T. N. A comprehensive review of the Paced Auditory Serial Addition Test (PASAT). Arch. Clin. Neuropsychol. 21, 53–76 (2006).

    Article  PubMed  Google Scholar 

  62. Scherer, P. Cognitive screening in multiple sclerosis. J. Neurol. 254 (Suppl. 2), II26–II29 (2007).

    PubMed  Google Scholar 

  63. Parmenter, B. A., Weinstock-Guttman, B., Garg, N., Munschauer, F. & Benedict, R. H. Screening for cognitive impairment in multiple sclerosis using the Symbol Digit Modalities Test. Mult. Scler. 13, 52–57 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Morrow, S. A. et al. Predicting loss of employment over three years in multiple sclerosis: clinically meaningful cognitive decline. Clin. Neuropsychol. 24, 1131–1145 (2010).

    Article  PubMed  Google Scholar 

  65. Balcer, L. J. & Frohman, E. M. Evaluating loss of visual function in multiple sclerosis as measured by low-contrast letter acuity. Neurology 74 (Suppl. 3), S16–S23 (2010).

    Article  PubMed  Google Scholar 

  66. Balcer, L. J. et al. New low-contrast vision charts: reliability and test characteristics in patients with multiple sclerosis. Mult. Scler. 6, 163–171 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Mowry, E. M. et al. Vision related quality of life in multiple sclerosis: correlation with new measures of low and high contrast letter acuity. J. Neurol. Neurosurg. Psychiatry 80, 767–772 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Frohman, E. M. et al. Characterizing the mechanisms of progression in multiple sclerosis: evidence and new hypotheses for future directions. Arch. Neurol. 62, 1345–1356 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Daumer, M., Neuhaus, A., Morrissey, S., Hintzen, R. & Ebers, G. C. MRI as an outcome in multiple sclerosis clinical trials. Neurology 72, 705–711 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Geurts, J. J., Calabrese, M., Fisher, E. & Rudick, R. A. Measurement and clinical effect of grey matter pathology in multiple sclerosis. Lancet Neurol. 11, 1082–1092 (2012).

    Article  PubMed  Google Scholar 

  71. Altmann, D. R. et al. Sample sizes for brain atrophy outcomes in trials for secondary progressive multiple sclerosis. Neurology 72, 595–601 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cohen, J. A., Reingold, S. C., Polman, C. H. & Wolinsky, J. S. Disability outcome measures in multiple sclerosis clinical trials: current status and future prospects. Lancet Neurol. 11, 467–476 (2012).

    Article  PubMed  Google Scholar 

  73. Havrdova, E. et al. Effect of natalizumab on clinical and radiological disease activity in multiple sclerosis: a retrospective analysis of the Natalizumab Safety and Efficacy in Relapsing-Remitting Multiple Sclerosis (AFFIRM) study. Lancet Neurol. 8, 254–260 (2009).

    Article  PubMed  Google Scholar 

  74. Giovannoni, G. et al. Sustained disease-activity-free status in patients with relapsing-remitting multiple sclerosis treated with cladribine tablets in the CLARITY study: a post-hoc and subgroup analysis. Lancet Neurol. 10, 329–337 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Cottrell, D. A. et al. The natural history of multiple sclerosis: a geographically based study. 5. The clinical features and natural history of primary progressive multiple sclerosis. Brain 122, 625–639 (1999).

    Article  PubMed  Google Scholar 

  76. Confavreux, C., Vukusic, S., Moreau, T. & Adeleine, P. Relapses and progression of disability in multiple sclerosis. N. Engl. J. Med. 343, 1430–1438 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Koch, M., Kingwell, E., Rieckmann, P. & Tremlett, H. The natural history of primary progressive multiple sclerosis. Neurology 73, 1996–2002 (2009).

    Article  PubMed  Google Scholar 

  78. Tremlett, H., Paty, D. & Devonshire, V. Disability progression in multiple sclerosis is slower than previously reported. Neurology 66, 172–177 (2006).

    Article  PubMed  Google Scholar 

  79. US National Institutes of Health. FTY720 in patients with primary progressive multiple sclerosis. ClinicalTrials.gov [online].

  80. Mostert, J. P., Koch, M. W., Heerings, M., Heersema, D. J. & De Keyser, J. Therapeutic potential of fluoxetine in neurological disorders. CNS Neurosci. Ther. 14, 153–164 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sicotte, N. L. et al. Treatment of multiple sclerosis with the pregnancy hormone estriol. Ann. Neurol. 52, 421–428 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Garay, L. et al. Protective effects of progesterone administration on axonal pathology in mice with experimental autoimmune encephalomyelitis. Brain Res. 1283, 177–185 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Walker, J. E. & Margolin, S. B. Pirfenidone for chronic progressive multiple sclerosis. Mult. Scler. 7, 305–312 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Walker, J. E., Giri, S. N. & Margolin, S. B. A double-blind, randomized, controlled study of oral pirfenidone for treatment of secondary progressive multiple sclerosis. Mult. Scler. 11, 149–158 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Chataway, J. et al. A novel adaptive design strategy increases the efficiency of clinical trials in secondary progressive multiple sclerosis. Mult. Scler. 17, 81–88 (2011).

    Article  PubMed  Google Scholar 

  86. Friede, T. et al. Designing a seamless phase II/III clinical trial using early outcomes for treatment selection: an application in multiple sclerosis. Stat. Med. 30, 1528–1540 (2011).

    CAS  PubMed  Google Scholar 

  87. Simon, R. Optimal two-stage designs for phase II clinical trials. Control. Clin. Trials. 10, 1–10 (1989).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M. W. Koch researched data for the article. All authors made substantial contributions to discussion of the article content, writing of the article, and to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Marcus W. Koch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koch, M., Cutter, G., Stys, P. et al. Treatment trials in progressive MS—current challenges and future directions. Nat Rev Neurol 9, 496–503 (2013). https://doi.org/10.1038/nrneurol.2013.148

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2013.148

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing