Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Defining and scoring response to IFN-β in multiple sclerosis

Abstract

The advent of a large number of new therapies for multiple sclerosis (MS) warrants the development of tools that enable selection of the best treatment option for each new patient with MS. Evidence from clinical trials clearly supports the efficacy of IFN-β for the treatment of MS, but few factors that predict a response to this drug in individual patients have emerged. This deficit might be due, at least in part, to the lack of a standardized definition of the clinical outcomes that signify improvement or worsening of the disease. MRI markers and clinical relapses have been the most widely studied short-term factors to predict long-term response to IFN-β, although the results are conflicting. Recently, integrated strategies combining MRI and clinical markers in scoring systems have provided a potentially useful approach for the management of patients with MS. In this Review, we focus on the many definitions of clinical response to IFN-β and explore the markers that can be used to predict this response. We also highlight advantages and limitations of the existing scoring systems in light of future expansion of these models to biological markers and to other classes of emerging therapies for MS.

Key Points

  • The emergence of new therapies for multiple sclerosis (MS) has created a need for the development of tools to select the best treatment for each individual

  • Identification of responders to IFN-β is crucial for personalized use of this disease-modifying therapy, but is challenging in a disease such MS

  • MRI markers and clinical relapses during the first year of IFN-β therapy best discriminate responding patients when used in combination

  • Integrated scoring systems allow incorporation of clinical data and MRI measures of disease activity into the therapeutic management of patients with MS

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: An evidence-based quantitative algorithm to monitor response to IFN-β.
Figure 2: Probability of disability progression over 2 years in patients with multiple sclerosis enrolled in the PRISMS trial.

References

  1. Compston, A. & Coles, A. Multiple sclerosis. Lancet 359, 1221–1231 (2002).

    Article  PubMed  Google Scholar 

  2. Baksi, R. The new era of multiple sclerosis therapeutics. Neurotherapeutics 10, 1 (2013).

    Article  Google Scholar 

  3. Castro-Borrero, W. et al. Current and emerging therapies in multiple sclerosis: a systematic review. Ther. Adv. Neurol. Disord. 5, 205–220 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  4. McGraw, C. A. & Lublin, F. D. Interferon beta and glatiramer acetate therapy. Neurotherapeutics 10, 2–18 (2013).

    CAS  Article  PubMed  Google Scholar 

  5. Paty, D. W. & Li, D. K. Interferon beta-1b is effective in relapsing–remitting multiple sclerosis. II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. UBC MS/MRI Study Group and the IFNB Multiple Sclerosis Study Group. Neurology 43, 662–667 (1993).

    CAS  Article  PubMed  Google Scholar 

  6. [No authors listed] Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. The IFNB Multiple Sclerosis Study Group. Neurology 43, 655–661 (1993).

  7. Jacobs, L. D. et al. Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group (MSCRG). Ann. Neurol. 39, 285–294 (1996).

    CAS  Article  PubMed  Google Scholar 

  8. No authors listed] Randomised double-blind placebo-controlled study of interferon β-1a in relapsing/remitting multiple sclerosis. PRISMS (Prevention of Relapses and Disability by Interferon β-1a Subcutaneously in Multiple Sclerosis) Study Group. Lancet 352, 1498–1504 (1998).

  9. Polman, C. H. et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med. 354, 899–910 (2006).

    CAS  Article  PubMed  Google Scholar 

  10. Chataway, J. & Miller, D. H. Natalizumab therapy for multiple sclerosis. Neurotherapeutics 10, 19–28 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Kappos, L. et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N. Engl. J. Med. 362, 387–401 (2010).

    CAS  Article  PubMed  Google Scholar 

  12. Cohen, J. A. et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N. Engl. J. Med. 362, 402–415 (2010).

    CAS  Article  PubMed  Google Scholar 

  13. Visser, F., Wattjes, M. P., Pouwels, P. J., Linssen, W. H. & van Oosten, B. W. Tumefactive multiple sclerosis lesions under fingolimod treatment. Neurology 79, 2000–2003 (2012).

    Article  PubMed  Google Scholar 

  14. Bourdette, D. & Gilden, D. Fingolimod and multiple sclerosis: four cautionary tales. Neurology 79, 1942–1943 (2012).

    Article  PubMed  Google Scholar 

  15. O'Connor, P. W. et al. A Phase II study of the safety and efficacy of teriflunomide in multiple sclerosis with relapses. Neurology 66, 894–900 (2006).

    CAS  Article  PubMed  Google Scholar 

  16. O'Connor, P. et al. Randomized trial of oral teriflunomide for relapsing multiple sclerosis. N. Engl. J. Med. 365, 1293–1303 (2011).

    CAS  Article  PubMed  Google Scholar 

  17. Gold, R. et al. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N. Engl. J. Med. 367, 1098–1107 (2012).

    CAS  Article  PubMed  Google Scholar 

  18. Fox, R. J. et al. Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N. Engl. J. Med. 367, 1087–1097 (2012).

    CAS  Article  PubMed  Google Scholar 

  19. Gold, R. et al. Daclizumab high-yield process in relapsing–remitting multiple sclerosis (SELECT): a randomised, double-blind, placebo-controlled trial. Lancet 381, 2167–2175 (2013).

    CAS  Article  PubMed  Google Scholar 

  20. Comi, G. et al. Placebo-controlled trial of oral laquinimod for multiple sclerosis. N. Engl. J. Med. 366, 1000–1009 (2012).

    CAS  Article  PubMed  Google Scholar 

  21. Cohen, J. A. et al. Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing–remitting multiple sclerosis, a randomised controlled phase 3 trial. Lancet 380, 1819–1828 (2012).

    CAS  Article  PubMed  Google Scholar 

  22. Coles, A. J. et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy, a randomised controlled phase 3 trial. Lancet 380, 1829–1839 (2012).

    CAS  Article  PubMed  Google Scholar 

  23. Kurtzke, J. F. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33, 1444–1452 (1983).

    CAS  Article  PubMed  Google Scholar 

  24. Poser, C. M. et al. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann. Neurol. 13, 227–231 (1983).

    CAS  Article  PubMed  Google Scholar 

  25. Barkhof, F. et al. Strategies for optimizing MRI techniques aimed at monitoring disease activity in multiple sclerosis treatment trials. J. Neurol. 244, 76–84 (1997).

    CAS  Article  PubMed  Google Scholar 

  26. Durelli, L. et al. MRI activity and neutralizing antibody as predictors of response to interferon β treatment in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 79, 646–651 (2008).

    CAS  Article  PubMed  Google Scholar 

  27. Cadavid, D. et al. Clinical consequences of MRI activity in treated multiple sclerosis. Mult. Scler. 17, 1113–1121 (2011).

    Article  PubMed  Google Scholar 

  28. Río, J. et al. Relationship between MRI lesion activity and response to IFN-β in relapsing–remitting multiple sclerosis patients. Mult. Scler. 14, 479–484 (2008).

    Article  PubMed  Google Scholar 

  29. Prosperini, L. et al. One-year MRI scan predicts clinical response to interferon β in multiple sclerosis. Eur. J. Neurol. 16, 1202–1209 (2009).

    CAS  Article  PubMed  Google Scholar 

  30. Sormani, M. et al. Scoring treatment response in patients with relapsing multiple sclerosis. Mult. Scler. 19, 605–612 (2013).

    CAS  Article  PubMed  Google Scholar 

  31. Tomassini, V. et al. Predictors of long-term clinical response to interferon beta therapy in relapsing multiple sclerosis. J. Neurol. 253, 287–293 (2006).

    CAS  Article  PubMed  Google Scholar 

  32. Bermel, R. et al. Predictors of long-term outcome in multiple sclerosis patients treated with interferon β. Ann. Neurol. 73, 95–103 (2013).

    CAS  Article  PubMed  Google Scholar 

  33. Goodin, D. et al. Relationship between early clinical characteristics and long term disability outcomes: 16 year cohort study (follow-up) of the pivotal interferon β-1b trial in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 83, 282–287 (2012).

    Article  PubMed  Google Scholar 

  34. Romeo, M. et al. Clinical and MRI predictors of response to interferon-beta and glatiramer acetate in relapsing–remitting multiple sclerosis patients. Eur. J. Neurol. 20, 1060–1067 (2013).

    CAS  Article  PubMed  Google Scholar 

  35. Mezei, Z. et al. Can a physician predict the clinical response to first-line immunomodulatory treatment in relapsing–remitting multiple sclerosis? Neuropsychiatr. Dis. Treat. 8, 465–473 (2012).

    PubMed  PubMed Central  Google Scholar 

  36. Waubant, E. et al. Clinical characteristics of responders to interferon therapy for relapsing MS. Neurology 61, 184–189 (2003).

    CAS  Article  PubMed  Google Scholar 

  37. Portaccio, E., Zipoli, V., Siracusa, G., Sorbi, S. & Amato, M. P. Response to interferon-beta therapy in relapsing–remitting multiple sclerosis, a comparison of different clinical criteria. Mult. Scler. 12, 281–286 (2006).

    CAS  Article  PubMed  Google Scholar 

  38. Fromont, A. et al. Clinical parameters to predict response to interferon in relapsing multiple sclerosis. Neuroepidemiology 31, 150–156 (2008).

    CAS  Article  PubMed  Google Scholar 

  39. Romeo, M. et al. Rio Score and Modified Rio Score validation in an Italian cohort of relapsing–remitting multiple sclerosis patients (abstract P549). Presented at the 28th Congress of the European Committee for Treatment and Research in Multiple Sclerosis, 10–13 October 2012.

  40. Freedman, M. et al. Recognizing and treating suboptimally controlled multiple sclerosis, steps toward regaining command. Curr. Med. Res. Opin. 10, 2459–2470 (2009).

    Article  Google Scholar 

  41. Río, J. et al. Assessment of different treatment failure criteria in a cohort of relapsing–remitting multiple sclerosis patients treated with interferon β: implications for clinical trials. Ann. Neurol. 52, 400–406 (2002).

    Article  PubMed  Google Scholar 

  42. Río, J. et al. Defining the response to interferon-β in relapsing–remitting multiple sclerosis patients. Ann. Neurol. 59, 344–352 (2006).

    Article  PubMed  Google Scholar 

  43. Río, J., Comabella, M. & Montalban, X. Predicting responders to therapies for multiple sclerosis. Nat. Rev. Neurol. 5, 553–560 (2009).

    Article  PubMed  Google Scholar 

  44. Polman, C. et al. Subgroups of the BENEFIT study, risk of developing MS and treatment effect of interferon beta-1b. J. Neurol. 255, 480–487 (2008).

    CAS  Article  PubMed  Google Scholar 

  45. O'Connor, P., Kinkel, R. P. & Kremenchutzky, M. Efficacy of intramuscular interferon beta-1a in patients with clinically isolated syndrome, analysis of subgroups based on new risk criteria. Mult. Scler. 15, 728–734 (2009).

    CAS  Article  PubMed  Google Scholar 

  46. Barkhof, F. et al. Validation of diagnostic magnetic resonance imaging criteria for multiple sclerosis and response to interferon β1a. Ann. Neurol. 53, 718–724 (2003).

    Article  PubMed  Google Scholar 

  47. Comi, G. et al. Comparison of two dosing frequencies of subcutaneous interferon beta-1a in patients with a first clinical demyelinating event suggestive of multiple sclerosis (REFLEX): a phase 3 randomised controlled trial. Lancet Neurol. 11, 33–41 (2012).

    CAS  Article  PubMed  Google Scholar 

  48. Martínez-Yélamos, S. et al. Regression to the mean in multiple sclerosis. Mult. Scler. 12, 826–829 (2006).

    Article  PubMed  Google Scholar 

  49. Prentice, R. L. Surrogate endpoints in clinical trials, definition and operational criteria. Stat. Med. 8, 431–440 (1989).

    CAS  Article  PubMed  Google Scholar 

  50. Sormani, M. P., Bruzzi, P., Comi, G. & Filippi, M. MRI metrics as surrogate markers for clinical relapse rate in relapsing–remitting MS patients. Neurology 58, 417–421 (2002).

    Article  PubMed  Google Scholar 

  51. Sormani, M. P. et al. MRI metrics as surrogate endpoints for EDSS progression in SPMS patients treated with IFN β-1b. Neurology 60, 1462–1466 (2003).

    CAS  Article  PubMed  Google Scholar 

  52. Sormani, M. P. et al. Magnetic resonance active lesions as individual-level surrogate for relapses in multiple sclerosis. Mult. Scler. 17, 541–549 (2011).

    Article  PubMed  Google Scholar 

  53. Sormani, M. P. et al. Combined MRI lesions and relapses as a perfect surrogate for disability in multiple sclerosis. Neurology 77, 1684–1690 (2011).

    CAS  Article  PubMed  Google Scholar 

  54. Wang, Y. C., Sandrock, A., Richert, J. R., Meyerson, L. & Miao, X. Short-term relapse quantitation as a fully surrogate endpoint for long-term sustained progression of disability in RRMS patients treated with natalizumab. Neurol. Res. Int. 2011, 195831 (2001).

    Google Scholar 

  55. Rudick, R., Lee, J., Simon, J., Ransohoff, R. M. & Fisher, E. Defining interferon β response status in multiple sclerosis patients. Ann. Neurol. 56, 548–555 (2004).

    CAS  Article  PubMed  Google Scholar 

  56. Inusah, S. et al. Assessing changes in relapse rates in multiple sclerosis. Mult. Scler. 16, 1414–1421 (2010).

    Article  PubMed  Google Scholar 

  57. Miller, D. H. et al. Serial gadolinium enhanced magnetic resonance imaging in multiple sclerosis. Brain 111, 927–939 (1988).

    Article  PubMed  Google Scholar 

  58. Freedman, M. S. et al. Treatment optimization in MS: Canadian MS Working Group updated recommendations. Can. J. Neurol. Sci. 40, 307–323 (2013).

    Article  PubMed  Google Scholar 

  59. Freedman, M. S. & Forrestal, F. G. Canadian treatment optimization recommendations (TOR) as a predictor of disease breakthrough in patients with multiple sclerosis treated with interferon β-1a: analysis of the PRISMS study. Mult. Scler. 14, 1234–1241 (2008).

    CAS  Article  PubMed  Google Scholar 

  60. Sormani, M., Signori, A., Stromillo, M. & De Stefano, N. Refining response to treatment as defined by the Modified Rio Score. Mult. Scler. http://dx.doi.org/10.1177/1352458513483892.

  61. Kalincik, T. et al. Volumetric MRI markers and predictors of disease activity in early multiple sclerosis: a longitudinal cohort study. PLoS ONE 7, e50101 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. Barkhof, F. et al. MRI monitoring of immunomodulation in relapse-onset multiple sclerosis trials. Nat. Rev. Neurol. 8, 13–21 (2011).

    Article  PubMed  Google Scholar 

  63. Barkhof, F. et al. Imaging outcomes for neuroprotection and repair in multiple sclerosis trials. Nat. Rev. Neurol. 5, 256–266 (2009).

    Article  PubMed  Google Scholar 

  64. Comabella, M. & Martin, R. Genomics in multiple sclerosis—current state and future directions. J. Neuroimmunol. 187, 1–8 (2007).

    CAS  Article  PubMed  Google Scholar 

  65. Singh, M. K. et al. Gene expression changes in peripheral blood mononuclear cells from multiple sclerosis patients undergoing β-interferon therapy. J. Neurol. Sci. 258, 52–59 (2007).

    CAS  Article  PubMed  Google Scholar 

  66. van Baarsen, L. G. et al. Pharmacogenomics of interferon β therapy in multiple sclerosis: baseline IFN signature determines pharmacological differences between patients. PLoS ONE 3, e1927 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Villoslada, P. et al. The HLA locus and multiple sclerosis in Spain. Role in disease susceptibility, clinical course and response to interferon β. J. Neuroimmunol. 130, 194–201 (2002).

    CAS  Article  PubMed  Google Scholar 

  68. Killestein, J. & Polman, C. H. Determinants of interferon β efficacy in patients with multiple sclerosis. Nat. Rev. Neurol. 7, 221–228 (2011).

    CAS  Article  PubMed  Google Scholar 

  69. Axtell, R. C. et al. T helper type 1 and 17 cells determine efficacy of interferon-β in multiple sclerosis and experimental encephalomyelitis. Nat. Med. 16, 406–412 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. Hartung, H. P. et al. Interleukin 17F level and interferon beta response in patients with multiple sclerosis. JAMA Neurol. http://dx.doi.org/10.1001/jamaneurol.2013.192.

  71. Bushnell, S. E. et al. Serum IL-17F does not predict poor response to IM IFNβ-1a in relapsing–remitting MS. Neurology. 79, 531–537 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Merck Serono S.A., Geneva, Switzerland, who allowed the use of the individual-patient database of the PRISMS study.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, discussed the content, wrote the article, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Maria Pia Sormani.

Ethics declarations

Competing interests

M. P. Sormani has received personal compensation for consulting services and for speaking activities from Actelion, Merck Serono, Synthon, Allozyne and Biogen Idec. She has also received consultation fees from Novartis. N. De Stefano has received honoraria from Schering, Biogen-Dompè, Teva and Merck Serono S.A. for consulting services, speaking and travel support, and has received consulting fees from Novartis. He serves on advisory boards for Merck Serono S.A.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sormani, M., De Stefano, N. Defining and scoring response to IFN-β in multiple sclerosis. Nat Rev Neurol 9, 504–512 (2013). https://doi.org/10.1038/nrneurol.2013.146

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2013.146

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing