Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nanotechnology—novel therapeutics for CNS disorders

Abstract

Research into treatments for diseases of the CNS has made impressive strides in the past few decades, but therapeutic options are limited for many patients with CNS disorders. Nanotechnology has emerged as an exciting and promising new means of treating neurological disease, with the potential to fundamentally change the way we approach CNS-targeted therapeutics. Molecules can be nanoengineered to cross the blood–brain barrier, target specific cell or signalling systems, respond to endogenous stimuli, or act as vehicles for gene delivery, or as a matrix to promote axon elongation and support cell survival. The wide variety of available nanotechnologies allows the selection of a nanoscale material with the characteristics best suited to the therapeutic challenges posed by an individual CNS disorder. In this Review, we describe recent advances in the development of nanotechnology for the treatment of neurological disorders—in particular, neurodegenerative disease and malignant brain tumours—and for the promotion of neuroregeneration.

Key Points

  • To be effective, therapies for CNS disorders must overcome hurdles including the blood–brain barrier, the complex cellular architecture of the CNS, and the multifactorial nature of CNS disease

  • Nanotechnology—engineering of materials that measure less than 100 nm in at least one dimension—can combat these challenges, and enable multimodal therapeutic targeting at the molecular level

  • The efficacy of nanoscale treatments has been demonstrated in models of neurodegenerative disease, neuroregeneration and brain tumours, but few of these treatments have been successfully translated to the clinic

  • The future of nanotechnology in clinical neuroscience will rely on our ability to interface this technology with our burgeoning understanding of the molecular underpinnings of CNS disease

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Abbott, N. J. Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem. Int. 45, 545–552 (2004).

    CAS  PubMed  Google Scholar 

  2. Nutt, J. G. & Wooten, G. F. Clinical practice. Diagnosis and initial management of Parkinson's disease. N. Engl. J. Med. 353, 1021–1027 (2005).

    CAS  PubMed  Google Scholar 

  3. Querfurth, H. W. & LaFerla, F. M. Alzheimer's disease. N. Engl. J. Med. 362, 329–344 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Tanzi, R. E. & Bertram, L. Twenty years of the Alzheimer's disease amyloid hypothesis: a genetic perspective. Cell 120, 545–555 (2005).

    CAS  PubMed  Google Scholar 

  5. Santacruz, K. et al. Tau suppression in a neurodegenerative mouse model improves memory function. Science 309, 476–481 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Smith, M. A. et al. Oxidative damage in Alzheimer's. Nature 382, 120–121 (1996).

    CAS  PubMed  Google Scholar 

  7. Ehmann, W. D., Markesbery, W. R., Alauddin, M., Hossain, T. I. & Brubaker, E. H. Brain trace elements in Alzheimer's disease. Neurotoxicology 7, 195–206 (1986).

    CAS  PubMed  Google Scholar 

  8. Mesulam, M., Shaw, P., Mash, D. & Weintraub, S. Cholinergic nucleus basalis tauopathy emerges early in the aging–MCI–AD continuum. Ann. Neurol. 55, 815–828 (2004).

    CAS  PubMed  Google Scholar 

  9. Brambilla, D. et al. Nanotechnologies for Alzheimer's disease: diagnosis, therapy, and safety issues. Nanomedicine 7, 521–540 (2011).

    CAS  PubMed  Google Scholar 

  10. Kohno, T., Kobayashi, K., Maeda, T., Sato, K. & Takashima, A. Three-dimensional structures of the amyloid β peptide (25–35) in membrane-mimicking environment. Biochemistry 35, 16094–16104 (1996).

    CAS  PubMed  Google Scholar 

  11. Pai, A. S., Rubinstein, I. & Onyuksel, H. PEGylated phospholipid nanomicelles interact with β-amyloid(1–42) and mitigate its β-sheet formation, aggregation and neurotoxicity in vitro. Peptides 27, 2858–2866 (2006).

    CAS  PubMed  Google Scholar 

  12. Yang, F. et al. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem. 280, 5892–5901 (2005).

    CAS  PubMed  Google Scholar 

  13. Taylor, M. et al. Effect of curcumin-associated and lipid ligand-functionalized nanoliposomes on aggregation of the Alzheimer's Aβ peptide. Nanomedicine 7, 541–550 (2011).

    CAS  PubMed  Google Scholar 

  14. Mourtas, S. et al. Curcumin-decorated nanoliposomes with very high affinity for amyloid-β1-42 peptide. Biomaterials 32, 1635–1645 (2011).

    CAS  PubMed  Google Scholar 

  15. Lovell, M. A., Robertson, J. D., Teesdale, W. J., Campbell, J. L. & Markesbery, W. R. Copper, iron and zinc in Alzheimer's disease senile plaques. J. Neurol. Sci. 158, 47–52 (1998).

    CAS  PubMed  Google Scholar 

  16. Cherny, R. A. et al. Treatment with a copper–zinc chelator markedly and rapidly inhibits β-amyloid accumulation in Alzheimer's disease transgenic mice. Neuron 30, 665–676 (2001).

    CAS  PubMed  Google Scholar 

  17. Ritchie, C. W. et al. Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Aβ amyloid deposition and toxicity in Alzheimer disease: a pilot phase 2 clinical trial. Arch. Neurol. 60, 1685–1691 (2003).

    PubMed  Google Scholar 

  18. Cui, Z. et al. Novel D-penicillamine carrying nanoparticles for metal chelation therapy in Alzheimer's and other CNS diseases. Eur. J. Pharm. Biopharm. 59, 263–272 (2005).

    CAS  PubMed  Google Scholar 

  19. Nomura, Y., Ikeda, M., Yamaguchi, N., Aoyama, Y. & Akiyoshi, K. Protein refolding assisted by self-assembled nanogels as novel artificial molecular chaperone. FEBS Lett. 553, 271–276 (2003).

    CAS  PubMed  Google Scholar 

  20. Ikeda, K., Okada, T., Sawada, S., Akiyoshi, K. & Matsuzaki, K. Inhibition of the formation of amyloid β-protein fibrils using biocompatible nanogels as artificial chaperones. FEBS Lett. 580, 6587–6595 (2006).

    CAS  PubMed  Google Scholar 

  21. Boridy, S., Takahashi, H., Akiyoshi, K. & Maysinger, D. The binding of pullulan modified cholesteryl nanogels to Aβ oligomers and their suppression of cytotoxicity. Biomaterials 30, 5583–5591 (2009).

    CAS  PubMed  Google Scholar 

  22. Nunomura, A. et al. Oxidative damage is the earliest event in Alzheimer disease. J. Neuropathol. Exp. Neurol. 60, 759–767 (2001).

    CAS  PubMed  Google Scholar 

  23. Krusic, P. J., Wasserman, E., Keizer, P. N., Morton, J. R. & Preston, K. F. Radical reactions of c60. Science 254, 1183–1185 (1991).

    CAS  PubMed  Google Scholar 

  24. Dugan, L. L., Gabrielsen, J. K., Yu, S. P., Lin, T. S. & Choi, D. W. Buckminsterfullerenol free radical scavengers reduce excitotoxic and apoptotic death of cultured cortical neurons. Neurobiol. Dis. 3, 129–135 (1996).

    CAS  PubMed  Google Scholar 

  25. Dugan, L. L. et al. Carboxyfullerenes as neuroprotective agents. Proc. Natl Acad. Sci. USA 94, 9434–9439 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Podolski, I. Y. et al. Effects of hydrated forms of C60 fullerene on amyloid 1-peptide fibrillization in vitro and performance of the cognitive task. J. Nanosci. Nanotechnol. 7, 1479–1485 (2007).

    CAS  PubMed  Google Scholar 

  27. Trinh, N. H., Hoblyn, J., Mohanty, S. & Yaffe, K. Efficacy of cholinesterase inhibitors in the treatment of neuropsychiatric symptoms and functional impairment in Alzheimer disease: a meta-analysis. JAMA 289, 210–216 (2003).

    CAS  PubMed  Google Scholar 

  28. Yang, Z. et al. Pharmacological and toxicological target organelles and safe use of single-walled carbon nanotubes as drug carriers in treating Alzheimer disease. Nanomedicine 6, 427–441 (2010).

    CAS  PubMed  Google Scholar 

  29. Smart, S. K., Cassady, A. I., Lu, G. Q. & Martin, D. J. The biocompatibility of carbon nanotubes. Carbon 44, 1034–1047 (2006).

    CAS  Google Scholar 

  30. Kim, H. R. et al. Translocation of poly(ethylene glycol-co-hexadecyl)cyanoacrylate nanoparticles into rat brain endothelial cells: role of apolipoproteins in receptor-mediated endocytosis. Biomacromolecules 8, 793–799 (2007).

    CAS  PubMed  Google Scholar 

  31. Wilson, B. et al. Poly(n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer's disease. Brain Res. 1200, 159–168 (2008).

    CAS  PubMed  Google Scholar 

  32. Joshi, S. A., Chavhan, S. S. & Sawant, K. K. Rivastigmine-loaded PLGA and PBCA nanoparticles: preparation, optimization, characterization, in vitro and pharmacodynamic studies. Eur. J. Pharm. Biopharm. 76, 189–199 (2010).

    CAS  PubMed  Google Scholar 

  33. Lees, A. J., Hardy, J. & Revesz, T. Parkinson's disease. Lancet 373, 2055–2066 (2009).

    CAS  PubMed  Google Scholar 

  34. Fahn, S. et al. Levodopa and the progression of Parkinson's disease. N. Engl. J. Med. 351, 2498–2508 (2004).

    CAS  PubMed  Google Scholar 

  35. Group, P. S. A controlled trial of rasagiline in early Parkinson disease: the TEMPO Study. Arch. Neurol. 59, 1937–1943 (2002).

    Google Scholar 

  36. Witt, J. & Marks, W. J. Jr. An update on gene therapy in Parkinson's disease. Curr. Neurol. Neurosci. Rep. 11, 362–370 (2011).

    CAS  PubMed  Google Scholar 

  37. Luo, D. & Saltzman, W. M. Synthetic DNA delivery systems. Nat. Biotechnol. 18, 33–37 (2000).

    CAS  PubMed  Google Scholar 

  38. Vinogradov, S. V., Batrakova, E. V. & Kabanov, A. V. Nanogels for oligonucleotide delivery to the brain. Bioconjug. Chem. 15, 50–60 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, Y., Calon, F., Zhu, C., Boado, R. J. & Pardridge, W. M. Intravenous nonviral gene therapy causes normalization of striatal tyrosine hydroxylase and reversal of motor impairment in experimental parkinsonism. Hum. Gene Ther. 14, 1–12 (2003).

    PubMed  Google Scholar 

  40. Yurek, D. M., Flectcher, A. M., Kowalczyk, T. H., Padegimas, L. & Cooper, M. J. Compacted DNA nanoparticle gene transfer of GDNF to the rat striatum enhances the survival of grafted fetal dopamine neurons. Cell Transplant 18, 1183–1196 (2009).

    PubMed  Google Scholar 

  41. Jenner, P. Oxidative mechanisms in nigral cell death in Parkinson's disease. Mov. Disord. 13 (Suppl. 1), 24–34 (1998).

    PubMed  Google Scholar 

  42. Lotharius, J., Dugan, L. L. & O'Malley, K. L. Distinct mechanisms underlie neurotoxin-mediated cell death in cultured dopaminergic neurons. J. Neurosci. 19, 1284–1293 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lin, A. M. et al. Carboxyfullerene prevents iron-induced oxidative stress in rat brain. J. Neurochem. 72, 1634–1640 (1999).

    CAS  PubMed  Google Scholar 

  44. Matsumoto, K., Sato, C., Naka, Y., Whitby, R. & Shimizu, N. Stimulation of neuronal neurite outgrowth using functionalized carbon nanotubes. Nanotechnology 21, 115101 (2010).

    CAS  PubMed  Google Scholar 

  45. Cellot, G. et al. Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts. Nat. Nanotechnol. 4, 126–133 (2009).

    CAS  PubMed  Google Scholar 

  46. Mazzatenta, A. et al. Interfacing neurons with carbon nanotubes: electrical signal transfer and synaptic stimulation in cultured brain circuits. J. Neurosci. 27, 6931–6936 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Foldvari, M. & Bagonluri, M. Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues. Nanomedicine 4, 183–200 (2008).

    CAS  PubMed  Google Scholar 

  48. Jia, G. et al. Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ. Sci. Technol. 39, 1378–1383 (2005).

    CAS  PubMed  Google Scholar 

  49. Manna, S. K. et al. Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-κB in human keratinocytes. Nano. Lett. 5, 1676–1684 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Yehia, H. N. et al. Single-walled carbon nanotube interactions with HeLa cells. J. Nanobiotechnology 5, 8 (2007).

    PubMed  PubMed Central  Google Scholar 

  51. Davoren, M. et al. In vitro toxicity evaluation of single walled carbon nanotubes on human A549 lung cells. Toxicol. In Vitro 21, 438–448 (2007).

    CAS  PubMed  Google Scholar 

  52. Liu, K., Tedeschi, A., Park, K. K. & He, Z. Neuronal intrinsic mechanisms of axon regeneration. Ann. Rev. Neurosci. 34, 131–152 (2011).

    PubMed  Google Scholar 

  53. Nash, M., Pribiag, H., Fournier, A. E. & Jacobson, C. Central nervous system regeneration inhibitors and their intracellular substrates. Mol. Neurobiol. 40, 224–235 (2009).

    CAS  PubMed  Google Scholar 

  54. Hannila, S. S., Siddiq, M. M. & Filbin, M. T. Therapeutic approaches to promoting axonal regeneration in the adult mammalian spinal cord. Int. Rev. Neurobiol. 77, 57–105 (2007).

    CAS  PubMed  Google Scholar 

  55. Yang, F. et al. Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials 25, 1891–1900 (2004).

    CAS  PubMed  Google Scholar 

  56. Yang, F., Murugan, R., Wang, S. & Ramakrishna, S. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26, 2603–2610 (2005).

    CAS  PubMed  Google Scholar 

  57. Moore, D. L. & Goldberg, J. L. Four steps to optic nerve regeneration. J. Neuro-ophthalmol. 30, 347–360 (2010).

    Google Scholar 

  58. Benowitz, L. I. & Yin, Y. Optic nerve regeneration. Arch. Ophthalmol. 128, 1059–1064 (2011).

    Google Scholar 

  59. Zhang, S., Holmes, T., Lockshin, C. & Rich, A. Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc. Natl Acad. Sci. USA 90, 3334–3338 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Holmes, T. C. et al. Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proc. Natl Acad. Sci. USA 97, 6728–6733 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Ellis-Behnke, R. G. et al. Nano neuro knitting: peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proc. Natl Acad. Sci. USA 103, 5054–5059 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Liang, Y. X. et al. CNS regeneration after chronic injury using a self-assembled nanomaterial and MEMRI for real-time in vivo monitoring. Nanomedicine 7, 351–359 (2011).

    CAS  PubMed  Google Scholar 

  63. Meyer-Franke, A., Kaplan, M. R., Pfrieger, F. W. & Barres, B. A. Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture. Neuron 15, 805–819 (1995).

    CAS  PubMed  Google Scholar 

  64. Burdick, J. A., Ward, M., Liang, E., Young, M. J. & Langer, R. Stimulation of neurite outgrowth by neurotrophins delivered from degradable hydrogels. Biomaterials 27, 452–459 (2006).

    CAS  PubMed  Google Scholar 

  65. Smith, G. M. & Strunz, C. Growth factor and cytokine regulation of chondroitin sulfate proteoglycans by astrocytes. Glia 52, 209–218 (2005).

    PubMed  Google Scholar 

  66. Liu, B., Chen, H., Johns, T. G. & Neufeld, A. H. Epidermal growth factor receptor activation: an upstream signal for transition of quiescent astrocytes into reactive astrocytes after neural injury. J. Neurosci. 26, 7532–7540 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Koprivica, V. et al. EGFR activation mediates inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans. Science 310, 106–110 (2005).

    CAS  PubMed  Google Scholar 

  68. Robinson, R. et al. Nanospheres delivering the EGFR TKI AG1478 promote optic nerve regeneration: the role of size for intraocular drug delivery. ACS Nano 5, 4392–4400 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Paralysis facts & figures. Christopher & Dana Reeve Foundation Paralysis Resource Center (2010).

  70. Ackery, A., Tator, C. & Krassioukov, A. A global perspective on spinal cord injury epidemiology. J. Neurotrauma 21, 1355–1370 (2004).

    PubMed  Google Scholar 

  71. Schwab, M. E. Repairing the injured spinal cord. Science 295, 1029–1031 (2002).

    CAS  PubMed  Google Scholar 

  72. Sahni, V. & Kessler, J. A. Stem cell therapies for spinal cord injury. Nat. Rev. Neurol. 6, 363–372 (2010).

    PubMed  PubMed Central  Google Scholar 

  73. Hawryluk, G. W., Rowland, J., Kwon, B. K. & Fehlings, M. G. Protection and repair of the injured spinal cord: a review of completed, ongoing, and planned clinical trials for acute spinal cord injury. Neurosurg. Focus 25, E14 (2008).

    PubMed  Google Scholar 

  74. Woerly, S. et al. Neural tissue formation within porous hydrogels implanted in brain and spinal cord lesions: ultrastructural, immunohistochemical, and diffusion studies. Tissue Eng. 5, 467–488 (1999).

    CAS  PubMed  Google Scholar 

  75. Tuckwell, D. S., Weston, S. A. & Humphries, M. J. Integrins: a review of their structure and mechanisms of ligand binding. Symp. Soc. Exp. Biol. 47, 107–136 (1993).

    CAS  PubMed  Google Scholar 

  76. Woerly, S., Pinet, E., de Robertis, L., Van Diep, D. & Bousmina, M. Spinal cord repair with PHPMA hydrogel containing RGD peptides (NeuroGel). Biomaterials 22, 1095–1111 (2001).

    CAS  PubMed  Google Scholar 

  77. Coumans, J. V. et al. Axonal regeneration and functional recovery after complete spinal cord transection in rats by delayed treatment with transplants and neurotrophins. J. Neurosci. 21, 9334–9344 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Piantino, J., Burdick, J. A., Goldberg, D., Langer, R. & Benowitz, L. I. An injectable, biodegradable hydrogel for trophic factor delivery enhances axonal rewiring and improves performance after spinal cord injury. Exp. Neurol. 201, 359–367 (2006).

    CAS  PubMed  Google Scholar 

  79. Teng, Y. D. et al. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc. Natl Acad. Sci. USA 99, 3024–3029 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Rochkind, S. et al. Development of a tissue-engineered composite implant for treating traumatic paraplegia in rats. Eur. Spine J. 15, 234–245 (2006).

    CAS  PubMed  Google Scholar 

  81. Guo, J. et al. Reknitting the injured spinal cord by self-assembling peptide nanofiber scaffold. Nanomedicine 3, 311–321 (2007).

    CAS  PubMed  Google Scholar 

  82. Silva, G. A. Nanotechnology approaches for the regeneration and neuroprotection of the central nervous system. Surg. Neurol. 63, 301–306 (2005).

    PubMed  Google Scholar 

  83. Hartgerink, J. D., Beniash, E. & Stupp, S. I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294, 1684–1688 (2001).

    CAS  PubMed  Google Scholar 

  84. Hartgerink, J. D., Beniash, E. & Stupp, S. I. Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self-assembling materials. Proc. Natl Acad. Sci. USA 99, 5133–5138 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Tashiro, K. et al. A synthetic peptide containing the IKVAV sequence from the A chain of laminin mediates cell attachment, migration, and neurite outgrowth. J. Biol. Chem. 264, 16174–16182 (1989).

    CAS  PubMed  Google Scholar 

  86. Jucker, M., Kleinman, H. K. & Ingram, D. K. Fetal rat septal cells adhere to and extend processes on basement membrane, laminin, and a synthetic peptide from the laminin A chain sequence. J. Neurosci. Res. 28, 507–517 (1991).

    CAS  PubMed  Google Scholar 

  87. Silva, G. A. et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303, 1352–1355 (2004).

    CAS  PubMed  Google Scholar 

  88. Tysseling-Mattiace, V. M. et al. Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury. J. Neurosci. 28, 3814–3823 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Tysseling, V. M. et al. Self-assembling peptide amphiphile promotes plasticity of serotonergic fibers following spinal cord injury. J. Neurosci. Res. 88, 3161–3170 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. National Cancer Institute [online], (2012).

  91. Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996 (2005).

    CAS  PubMed  Google Scholar 

  92. Crowley, R. W., Pouratian, N. & Sheehan, J. P. Gamma knife surgery for glioblastoma multiforme. Neurosurg. Focus 20, E17 (2006).

    PubMed  Google Scholar 

  93. Dehdashti, A. R., Hegi, M. E., Regli, L., Pica, A. & Stupp, R. New trends in the medical management of glioblastoma multiforme: the role of temozolomide chemotherapy. Neurosurg. Focus 20, E6 (2006).

    PubMed  Google Scholar 

  94. Dixit, S., Hingorani, M., Achawal, S. & Scott, I. The sequential use of carmustine wafers (Gliadel®) and post-operative radiotherapy with concomitant temozolomide followed by adjuvant temozolomide: a clinical review. Br. J. Neurosurg. 25, 459–469 (2011).

    PubMed  Google Scholar 

  95. Rich, J. N. et al. Phase II trial of gefitinib in recurrent glioblastoma. J. Clin. Oncol. 22, 133–142 (2004).

    CAS  PubMed  Google Scholar 

  96. Gao, K. & Jiang, X. Influence of particle size on transport of methotrexate across blood brain barrier by polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Int. J. Pharm. 310, 213–219 (2006).

    CAS  PubMed  Google Scholar 

  97. Tian, X. H. et al. Enhanced brain targeting of temozolomide in polysorbate-80 coated polybutylcyanoacrylate nanoparticles. Int. J. Nanomedicine 6, 445–452 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Huang, G., Zhang, N., Bi, X. & Dou, M. Solid lipid nanoparticles of temozolomide: potential reduction of cardial and nephric toxicity. Int. J. Pharm. 355, 314–320 (2008).

    CAS  PubMed  Google Scholar 

  99. Lamprecht, A. & Benoit, J. P. Etoposide nanocarriers suppress glioma cell growth by intracellular drug delivery and simultaneous P-glycoprotein inhibition. J. Control Release 112, 208–213 (2006).

    CAS  PubMed  Google Scholar 

  100. Garcion, E. et al. A new generation of anticancer, drug-loaded, colloidal vectors reverses multidrug resistance in glioma and reduces tumor progression in rats. Mol. Cancer Ther. 5, 1710–1722 (2006).

    CAS  PubMed  Google Scholar 

  101. Dean, M., Fojo, T. & Bates, S. Tumour stem cells and drug resistance. Nat. Rev. Cancer 5, 275–284 (2005).

    Google Scholar 

  102. Dhanikula, R. S., Argaw, A., Bouchard, J. F. & Hildgen, P. Methotrexate loaded polyether-copolyester dendrimers for the treatment of gliomas: enhanced efficacy and intratumoral transport capability. Mol. Pharm. 5, 105–116 (2008).

    CAS  PubMed  Google Scholar 

  103. He, H. et al. PEGylated Poly(amidoamine) dendrimer-based dual-targeting carrier for treating brain tumors. Biomaterials 32, 478–487 (2010).

    PubMed  Google Scholar 

  104. Hovanessian, A. G. et al. Surface expressed nucleolin is constantly induced in tumor cells to mediate calcium-dependent ligand internalization. PLoS ONE 5, e15787 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Fogal, V., Sugahara, K. N., Ruoslahti, E. & Christian, S. Cell surface nucleolin antagonist causes endothelial cell apoptosis and normalization of tumor vasculature. Angiogenesis 12, 91–100 (2009).

    CAS  PubMed  Google Scholar 

  106. Guo, J. et al. Aptamer-functionalized PEG–PLGA nanoparticles for enhanced anti-glioma drug delivery. Biomaterials 32, 8010–8020 (2011).

    CAS  PubMed  Google Scholar 

  107. Demeule, M. et al. Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector angiopep-2. J. Neurochem. 106, 1534–1544 (2008).

    CAS  PubMed  Google Scholar 

  108. Xin, H. et al. Angiopep-conjugated poly(ethylene glycol)-co-poly(ɛ-caprolactone) nanoparticles as dual-targeting drug delivery system for brain glioma. Biomaterials 32, 4293–4305 (2011).

    CAS  PubMed  Google Scholar 

  109. Mamot, C. et al. Epidermal growth factor receptor (EGFR)-targeted immunoliposomes mediate specific and efficient drug delivery to EGFR- and EGFRvIII-overexpressing tumor cells. Cancer Res. 63, 3154–3161 (2003).

    CAS  PubMed  Google Scholar 

  110. Mamot, C. et al. Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo. Cancer Res. 65, 11631–11638 (2005).

    CAS  PubMed  Google Scholar 

  111. Hadjipanayis, C. G. et al. EGFRvIII antibody-conjugated iron oxide nanoparticles for magnetic resonance imaging-guided convection-enhanced delivery and targeted therapy of glioblastoma. Cancer Res. 70, 6303–6312 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Lu, W., Sun, Q., Wan, J., She, Z. & Jiang, X. G. Cationic albumin-conjugated pegylated nanoparticles allow gene delivery into brain tumors via intravenous administration. Cancer Res. 66, 11878–11887 (2006).

    CAS  PubMed  Google Scholar 

  113. Zhang, Y., Jeong Lee, H., Boado, R. J. & Pardridge, W. M. Receptor-mediated delivery of an antisense gene to human brain cancer cells. J. Gene Med. 4, 183–194 (2002).

    PubMed  Google Scholar 

  114. Zhang, Y., Zhu, C. & Pardridge, W. M. Antisense gene therapy of brain cancer with an artificial virus gene delivery system. Mol. Ther. 6, 67–72 (2002).

    CAS  PubMed  Google Scholar 

  115. Ding, H. et al. Inhibition of brain tumor growth by intravenous poly (beta-L-malic acid) nanobioconjugate with pH-dependent drug release [corrected]. Proc. Natl Acad. Sci. USA 107, 18143–18148 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Agemy, L. et al. Targeted nanoparticle enhanced proapoptotic peptide as potential therapy for glioblastoma. Proc. Natl Acad. Sci. USA 108, 17450–17455 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. US National Library of Medicine. A phase I trial of nanoliposomal CPT-11 (NL CPT-11) in patients with recurrent high-grade gliomas. ClinicalTrials.gov [online], (2011).

  118. Noble, C. O. et al. Novel nanoliposomal CPT-11 infused by convection-enhanced delivery in intracranial tumors: pharmacology and efficacy. Cancer Res. 66, 2801–2806 (2006).

    CAS  PubMed  Google Scholar 

  119. Kunzmann, A. et al. Toxicology of engineered nanomaterials: focus on biocompatibility, biodistribution and biodegradation. Biochim. Biophys. Acta 1810, 361–373 (2010).

    PubMed  Google Scholar 

  120. Garnett, M. C. & Kallinteri, P. Nanomedicines and nanotoxicology: some physiological principles. Occup. Med. (Lond.) 56, 307–311 (2006).

    CAS  Google Scholar 

  121. Zolnik, B. S. & Sadrieh, N. Regulatory perspective on the importance of ADME assessment of nanoscale material containing drugs. Adv. Drug Deliv. Rev. 61, 422–427 (2009).

    CAS  PubMed  Google Scholar 

  122. Nanotechnology Task Force Report 2007. U.S. Food and Drug Administration [online], (2007).

  123. Vega-Villa, K. R. et al. Clinical toxicities of nanocarrier systems. Adv. Drug Deliv. Rev. 60, 929–938 (2008).

    CAS  PubMed  Google Scholar 

  124. Marano, F., Hussain, S., Rodrigues-Lima, F., Baeza-Squiban, A. & Boland, S. Nanoparticles: molecular targets and cell signalling. Arch. Toxicol. 85, 733–741 (2011).

    CAS  PubMed  Google Scholar 

  125. Singh, N. et al. NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30, 3891–3914 (2009).

    CAS  PubMed  Google Scholar 

  126. Dobrovolskaia, M. A. & McNeil, S. E. Immunological properties of engineered nanomaterials. Nat. Nanotechnol. 2, 469–478 (2007).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M. Srikanth researched data for the article, contributed to discussion of the content, wrote the article, and contributed to the review and editing of the manuscript before submission. J. A. Kessler provided substantial contribution to discussion of the content and to the review and editing of the manuscript before submission.

Corresponding author

Correspondence to Maya Srikanth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srikanth, M., Kessler, J. Nanotechnology—novel therapeutics for CNS disorders. Nat Rev Neurol 8, 307–318 (2012). https://doi.org/10.1038/nrneurol.2012.76

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2012.76

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer