Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Roles of mTOR complexes in the kidney: implications for renal disease and transplantation

Key Points

  • The mTOR pathway has a central role in the regulation of cell metabolism, growth and proliferation

  • Pharmacological inhibition of mTOR and selective gene targeting of mTORC1 or mTORC2 in podocytes and tubular epithelial cells has helped to elucidate their role in renal cell homeostasis, including in autophagy

  • Mechanistic insights into the roles of mTOR complexes in regulating immune cell function are helping to improve understanding of the effects of mTOR inhibitors in renal disease and transplant rejection

  • mTOR is increasingly recognized as having a fundamental role in the development of glomerular disease and in acute kidney injury; its role in fibrotic kidney disease is less certain

  • New generation dual mTORC1 and mTORC2 inhibitors offer potential for the treatment of renal cell carcinoma

  • mTOR inhibitors are associated with reduced rates of skin cancer and cytomegalovirus infection in renal transplant recipients

Abstract

The mTOR pathway has a central role in the regulation of cell metabolism, growth and proliferation. Studies involving selective gene targeting of mTOR complexes (mTORC1 and mTORC2) in renal cell populations and/or pharmacologic mTOR inhibition have revealed important roles of mTOR in podocyte homeostasis and tubular transport. Important advances have also been made in understanding the role of mTOR in renal injury, polycystic kidney disease and glomerular diseases, including diabetic nephropathy. Novel insights into the roles of mTORC1 and mTORC2 in the regulation of immune cell homeostasis and function are helping to improve understanding of the complex effects of mTOR targeting on immune responses, including those that impact both de novo renal disease and renal allograft outcomes. Extensive experience in clinical renal transplantation has resulted in successful conversion of patients from calcineurin inhibitors to mTOR inhibitors at various times post-transplantation, with excellent long-term graft function. Widespread use of this practice has, however, been limited owing to mTOR-inhibitor- related toxicities. Unique attributes of mTOR inhibitors include reduced rates of squamous cell carcinoma and cytomegalovirus infection compared to other regimens. As understanding of the mechanisms by which mTORC1 and mTORC2 drive the pathogenesis of renal disease progresses, clinical studies of mTOR pathway targeting will enable testing of evolving hypotheses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: mTOR complex biology.
Figure 2: Roles of mTOR complexes in the kidney.
Figure 3: Roles of mTOR in immune cell and vascular endothelial cell homeostasis.

Similar content being viewed by others

References

  1. Vezina, C., Kudelski, A. & Sehgal, S. N. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J. Antibiot. (Tokyo) 28, 721–726 (1975).

    Article  CAS  Google Scholar 

  2. Calne, R. Y. et al. Rapamycin for immunosuppression in organ allografting. Lancet 2, 227 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Thomson, A. W., Turnquist, H. R. & Raimondi, G. Immunoregulatory functions of mTOR inhibition. Nat. Rev. Immunol. 9, 324–337 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Powell, J. D., Pollizzi, K. N., Heikamp, E. B. & Horton, M. R. Regulation of immune responses by mTOR. Annu. Rev. Immunol. 30, 39–68 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Shimobayashi, M. & Hall, M. N. Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat. Rev. Mol. Cell Biol. 15, 155–162 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Flinn, R. J., Yan, Y., Goswami, S., Parker, P. J. & Backer, J. M. The late endosome is essential for mTORC1 signaling. Mol. Biol. Cell 21, 833–841 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim, S. G. et al. Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex. Mol. Cell 49, 172–185 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Yadav, R. B. et al. mTOR direct interactions with Rheb-GTPase and raptor: sub-cellular localization using fluorescence lifetime imaging. BMC Cell Biol. 14, 3 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fournier, M. J. et al. Inactivation of the mTORC1-eukaryotic translation initiation factor 4E pathway alters stress granule formation. Mol. Cell. Biol. 33, 2285–2301 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Guertin, D. A. et al. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCα, but not S6K1. Dev. Cell 11, 859–871 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Zinzalla, V., Stracka, D., Oppliger, W. & Hall, M. N. Activation of mTORC2 by association with the ribosome. Cell 144, 757–768 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Xie, J. & Proud, C. G. Crosstalk between mTOR complexes. Nat. Cell Biol. 15, 1263–1265 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Schreiber, K. H. et al. Rapamycin-mediated mTORC2 inhibition is determined by the relative expression of FK506-binding proteins. Aging Cell 14, 265–273 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sarbassov, D. D. et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol. Cell 22, 159–168 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Gaubitz, C. et al. Molecular basis of the rapamycin insensitivity of target of rapamycin complex 2. Mol. Cell 58, 977–988 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Zeng, Z. et al. Rapamycin derivatives reduce mTORC2 signaling and inhibit AKT activation in AML. Blood 109, 3509–3512 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Feldman, M. E. et al. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol. 7, e38 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Brunn, G. J. et al. Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY294002. EMBO J. 15, 5256–5267 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yu, K. et al. Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin. Cancer Res. 69, 6232–6240 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Bendell, J. C. et al. A phase I dose-escalation study to assess safety, tolerability, pharmacokinetics, and preliminary efficacy of the dual mTORC1/mTORC2 kinase inhibitor CC-223 in patients with advanced solid tumors or multiple myeloma. Cancer 121, 3481–3490 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Pavenstadt, H., Kriz, W. & Kretzler, M. Cell biology of the glomerular podocyte. Physiol. Rev. 83, 253–307 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Godel, M. et al. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J. Clin. Invest. 121, 2197–2209 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Inoki, K. et al. mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J. Clin. Invest. 121, 2181–2196 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Groth, C. G. et al. Sirolimus (rapamycin)-based therapy in human renal transplantation: similar efficacy and different toxicity compared with cyclosporine. Sirolimus European Renal Transplant Study Group. Transplantation 67, 1036–1042 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Schwarz, C., Bohmig, G. A., Steininger, R., Mayer, G. & Oberbauer, R. Impaired phosphate handling of renal allografts is aggravated under rapamycin-based immunosuppression. Nephrol. Dial. Transplant. 16, 378–382 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. da Silva, C. A. et al. Rosiglitazone prevents sirolimus-induced hypomagnesemia, hypokalemia, and downregulation of NKCC2 protein expression. Am. J. Physiol. Renal Physiol. 297, F916–F922 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Wu, M. S., Hung, C. C. & Chang, C. T. Renal calcium handling after rapamycin conversion in chronic allograft dysfunction. Transpl. Int. 19, 140–145 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Tataranni, T. et al. Rapamycin-induced hypophosphatemia and insulin resistance are associated with mTORC2 activation and Klotho expression. Am. J. Transplant. 11, 1656–1664 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Haller, M. et al. Sirolimus induced phosphaturia is not caused by inhibition of renal apical sodium phosphate cotransporters. PLoS ONE 7, e39229 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kempe, D. S. et al. Rapamycin-induced phosphaturia. Nephrol. Dial. Transplant. 25, 2938–2944 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Gleixner, E. M. et al. V-ATPase/mTOR signaling regulates megalin-mediated apical endocytosis. Cell Rep. 8, 10–19 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Grahammer, F. et al. mTOR regulates endocytosis and nutrient transport in proximal tubular cells. J. Am. Soc. Nephrol. http://dx.doi.org/10.1681/ASN.2015111224 (2016).

  33. Grahammer, F. et al. mTORC1 maintains renal tubular homeostasis and is essential in response to ischemic stress. Proc. Natl Acad. Sci. USA 111, E2817–E2826 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lang, F. & Pearce, D. Regulation of the epithelial Na+ channel by the mTORC2/SGK1 pathway. Nephrol. Dial. Transplant. 31, 200–205 (2015).

    PubMed  PubMed Central  Google Scholar 

  35. Lu, M. et al. mTOR complex-2 activates ENaC by phosphorylating SGK1. J. Am. Soc. Nephrol. 21, 811–818 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gleason, C. E. et al. mTORC2 regulates renal tubule sodium uptake by promoting ENaC activity. J. Clin. Invest. 125, 117–128 (2015).

    Article  PubMed  Google Scholar 

  37. Grahammer, F. et al. mTORC2 critically regulates renal potassium handling. J. Clin. Invest. 126, 1773–1782 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Canaud, G. et al. Inhibition of the mTORC pathway in the antiphospholipid syndrome. N. Engl. J. Med. 371, 303–312 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Jindra, P. T., Jin, Y. P., Rozengurt, E. & Reed, E. F. HLA class I antibody-mediated endothelial cell proliferation via the mTOR pathway. J. Immunol. 180, 2357–2366 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Jindra, P. T., Jin, Y. P., Jacamo, R., Rozengurt, E. & Reed, E. F. MHC class I and integrin ligation induce ERK activation via an mTORC2-dependent pathway. Biochem. Biophys. Res. Commun. 369, 781–787 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. de Sandes-Freitas, T. V. et al. Subclinical lesions and donor-specific antibodies in kidney transplant recipients receiving tacrolimus-based immunosuppressive regimen followed by early conversion to sirolimus. Transplantation 99, 2372–2381 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Liefeldt, L. et al. Donor-specific HLA antibodies in a cohort comparing everolimus with cyclosporine after kidney transplantation. Am. J. Transplant. 12, 1192–1198 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Croze, L. E. et al. Conversion to mammalian target of rapamycin inhibitors increases risk of de novo donor-specific antibodies. Transpl. Int. 27, 775–783 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Lepin, E. J. et al. Phosphorylated S6 ribosomal protein: a novel biomarker of antibody-mediated rejection in heart allografts. Am. J. Transplant. 6, 1560–1571 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Jindra, P. T. et al. Anti-MHC class I antibody activation of proliferation and survival signaling in murine cardiac allografts. J. Immunol. 180, 2214–2224 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Kim, Y. C. & Guan, K. L. mTOR: a pharmacologic target for autophagy regulation. J. Clin. Invest. 125, 25–32 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ganley, I. G. et al. ULK1. ATG13. FIP200 complex mediates mTOR signaling and is essential for autophagy. J. Biol. Chem. 284, 12297–12305 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hosokawa, N. et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell 20, 1981–1991 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jung, C. H. et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 20, 1992–2003 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fougeray, S. & Pallet, N. Mechanisms and biological functions of autophagy in diseased and ageing kidneys. Nat. Rev. Nephrol. 11, 34–45 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Hartleben, B. et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J. Clin. Invest. 120, 1084–1096 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kawakami, T. et al. Deficient autophagy results in mitochondrial dysfunction and FSGS. J. Am. Soc. Nephrol. 26, 1040–1052 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Kimura, T. et al. Autophagy protects the proximal tubule from degeneration and acute ischemic injury. J. Am. Soc. Nephrol. 22, 902–913 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fabrizio, P., Pozza, F., Pletcher, S. D., Gendron, C. M. & Longo, V. D. Regulation of longevity and stress resistance by Sch9 in yeast. Science 292, 288–290 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Vellai, T. et al. Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 426, 620 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Kapahi, P. et al. Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr. Biol. 14, 885–890 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Harrison, D. E. et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392–395 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Johnson, S. C., Rabinovitch, P. S. & Kaeberlein, M. mTOR is a key modulator of ageing and age-related disease. Nature 493, 338–345 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhuo, L. et al. Expression and mechanism of mammalian target of rapamycin in age-related renal cell senescence and organ aging. Mech. Ageing Dev. 130, 700–708 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Zhang, S. et al. SIRT1 is required for the effects of rapamycin on high glucose-inducing mesangial cells senescence. Mech. Ageing Dev. 133, 387–400 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Weichhart, T., Hengstschlager, M. & Linke, M. Regulation of innate immune cell function by mTOR. Nat. Rev. Immunol. 15, 599–614 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fantus, D. & Thomson, A. W. Evolving perspectives of mTOR complexes in immunity and transplantation. Am. J. Transplant. 15, 891–902 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Lo, Y. C., Lee, C. F. & Powell, J. D. Insight into the role of mTOR and metabolism in T cells reveals new potential approaches to preventing graft rejection. Curr. Opin. Organ. Transplant 19, 363–371 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Turner, J. E., Paust, H. J., Steinmetz, O. M. & Panzer, U. The Th17 immune response in renal inflammation. Kidney Int. 77, 1070–1075 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Rogers, N. M., Ferenbach, D. A., Isenberg, J. S., Thomson, A. W. & Hughes, J. Dendritic cells and macrophages in the kidney: a spectrum of good and evil. Nat. Rev. Nephrol. 10, 625–643 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Park, C. O. & Kupper, T. S. The emerging role of resident memory T cells in protective immunity and inflammatory disease. Nat. Med. 21, 688–697 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Batal, I. et al. Dendritic cells in kidney transplant biopsy samples are associated with T cell infiltration and poor allograft survival. J. Am. Soc. Nephrol. 26, 3102–3113 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Turnquist, H. R. et al. Rapamycin-conditioned dendritic cells are poor stimulators of allogeneic CD4+ T cells, but enrich for antigen-specific Foxp3+ T regulatory cells and promote organ transplant tolerance. J. Immunol. 178, 7018–7031 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Hackstein, H. et al. Rapamycin inhibits IL-4—induced dendritic cell maturation in vitro and dendritic cell mobilization and function in vivo. Blood 101, 4457–4463 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Turnquist, H. R. et al. mTOR and GSK-3 shape the CD4+ T-cell stimulatory and differentiation capacity of myeloid DCs after exposure to LPS. Blood 115, 4758–4769 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Amiel, E. et al. Inhibition of mechanistic target of rapamycin promotes dendritic cell activation and enhances therapeutic autologous vaccination in mice. J. Immunol. 189, 2151–2158 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Brown, J., Wang, H., Suttles, J., Graves, D. T. & Martin, M. Mammalian target of rapamycin complex 2 (mTORC2) negatively regulates Toll-like receptor 4-mediated inflammatory response via FoxO1. J. Biol. Chem. 286, 44295–44305 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Raich-Regue, D. et al. mTORC2 deficiency in myeloid dendritic cells enhances their allogeneic Th1 and Th17 stimulatory ability after TLR4 ligation in vitro and in vivo. J. Immunol. 194, 4767–4776 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Raich-Regue, D. et al. Intratumoral delivery of mTORC2-deficient dendritic cells inhibits B16 melanoma growth by promoting CD8C effector T cell responses. Oncoimmunology http://dx.doi.org/10.1080/2162402X.2016.1146841 (2016).

  75. Chi, H. Regulation and function of mTOR signalling in T cell fate decisions. Nat. Rev. Immunol. 12, 325–338 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lee, K. et al. Vital roles of mTOR complex 2 in Notch-driven thymocyte differentiation and leukemia. J. Exp. Med. 209, 713–728 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tian, L., Lu, L., Yuan, Z., Lamb, J. R. & Tam, P. K. Acceleration of apoptosis in CD4+CD8+ thymocytes by rapamycin accompanied by increased CD4+CD25+ T cells in the periphery. Transplantation 77, 183–189 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Haxhinasto, S., Mathis, D. & Benoist, C. The AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells. J. Exp. Med. 205, 565–574 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Battaglia, M., Stabilini, A. & Roncarolo, M. G. Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells. Blood 105, 4743–4748 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Zeng, H. et al. mTORC1 couples immune signals and metabolic programming to establish Treg-cell function. Nature 499, 485–490 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Delgoffe, G. M. et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30, 832–844 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Delgoffe, G. M. et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat. Immunol. 12, 295–303 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ray, J. P. et al. The interleukin-2-mTORc1 kinase axis defines the signaling, differentiation, and metabolism of T helper 1 and follicular B helper T cells. Immunity 43, 690–702 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Matz, M. et al. Effects of sotrastaurin, mycophenolic acid and everolimus on human B-lymphocyte function and activation. Transpl. Int. 25, 1106–1116 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Benhamron, S. & Tirosh, B. Direct activation of mTOR in B lymphocytes confers impairment in B-cell maturation andloss of marginal zone B cells. Eur. J. Immunol. 41, 2390–2396 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Lee, K. et al. Requirement for Rictor in homeostasis and function of mature B lymphoid cells. Blood 122, 2369–2379 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Keating, R. et al. The kinase mTOR modulates the antibody response to provide cross-protective immunity to lethal infection with influenza virus. Nat. Immunol. 14, 1266–1276 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Limon, J. J. et al. mTOR kinase inhibitors promote antibody class switching via mTORC2 inhibition. Proc. Natl Acad. Sci. USA 111, E5076–E5085 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Jin, Y. P., Valenzuela, N. M., Ziegler, M. E., Rozengurt, E. & Reed, E. F. Everolimus inhibits anti-HLA I antibody-mediated endothelial cell signaling, migration and proliferation more potently than sirolimus. Am. J. Transplant. 14, 806–819 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Marcais, A. et al. The metabolic checkpoint kinase mTOR is essential for IL-15 signaling during the development and activation of NK cells. Nat. Immunol. 15, 749–757 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Shin, B. H. et al. Regulation of anti-HLA antibody-dependent natural killer cell activation by immunosuppressive agents. Transplantation 97, 294–300 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Prevot, N. et al. Mammalian target of rapamycin complex 2 regulates invariant NKT cell development and function independent of promyelocytic leukemia zinc-finger. J. Immunol. 194, 223–230 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Ochiai, T. et al. Effects of rapamycin in experimental organ allografting. Transplantation 56, 15–19 (1993).

    Article  CAS  PubMed  Google Scholar 

  94. Stepkowski, S. M., Chen, H., Daloze, P. & Kahan, B. D. Rapamycin, a potent immunosuppressive drug for vascularized heart, kidney, and small bowel transplantation in the rat. Transplantation 51, 22–26 (1991).

    Article  CAS  PubMed  Google Scholar 

  95. Poston, R. S. et al. Rapamycin reverses chronic graft vascular disease in a novel cardiac allograft model. Circulation 100, 67–74 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Ikonen, T. S. et al. Sirolimus (rapamycin) halts and reverses progression of allograft vascular disease in non-human primates. Transplantation 70, 969–975 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Nakamura, T., Nakao, T., Yoshimura, N. & Ashihara, E. Rapamycin prolongs cardiac allograft survival in a mouse model by inducing myeloid-derived suppressor cells. Am. J. Transplant. 15, 2364–2377 (2015).

    Article  CAS  PubMed  Google Scholar 

  98. Page, A. et al. CD40 blockade combines with CTLA4Ig and sirolimus to produce mixed chimerism in an MHC-defined rhesus macaque transplant model. Am. J. Transplant. 12, 115–125 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Pan, H. et al. The second-generation mTOR kinase inhibitor INK128 exhibits anti-inflammatory activity in lipopolysaccharide-activated RAW 264.7 cells. Inflammation 37, 756–765 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Rosborough, B. R. et al. Adenosine triphosphate-competitive mTOR inhibitors: a new class of immunosuppressive agents that inhibit allograft rejection. Am. J. Transplant. 14, 2173–2180 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhang, L. et al. Abrogation of chronic rejection in rat model system involves modulation of the mTORC1 and mTORC2 pathways. Transplantation 96, 782–790 (2013).

    Article  PubMed  Google Scholar 

  102. Murgia, M. G., Jordan, S. & Kahan, B. D. The side effect profile of sirolimus: a phase I study in quiescent cyclosporine-prednisone-treated renal transplant patients. Kidney Int. 49, 209–216 (1996).

    Article  CAS  PubMed  Google Scholar 

  103. MacDonald, A. S. A worldwide, phase III, randomized, controlled, safety and efficacy study of a sirolimus/cyclosporine regimen for prevention of acute rejection in recipients of primary mismatched renal allografts. Transplantation 71, 271–280 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Kahan, B. D., Julian, B. A., Pescovitz, M. D., Vanrenterghem, Y. & Neylan, J. Sirolimus reduces the incidence of acute rejection episodes despite lower cyclosporine doses in caucasian recipients of mismatched primary renal allografts: a phase II trial. Rapamune Study Group. Transplantation 68, 1526–1532 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Kahan, B. D. Efficacy of sirolimus compared with azathioprine for reduction of acute renal allograft rejection: a randomised multicentre study. The Rapamune, US Study Group. Lancet 356, 194–202 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Kreis, H. et al. Sirolimus in association with mycophenolate mofetil induction for the prevention of acute graft rejection in renal allograft recipients. Transplantation 69, 1252–1260 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Kreis, H. et al. Long-term benefits with sirolimus-based therapy after early cyclosporine withdrawal. J. Am. Soc. Nephrol. 15, 809–817 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Ekberg, H. et al. Reduced exposure to calcineurin inhibitors in renal transplantation. N. Engl. J. Med. 357, 2562–2575 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Flechner, S. M. et al. The ORION study: comparison of two sirolimus-based regimens versus tacrolimus and mycophenolate mofetil in renal allograft recipients. Am. J. Transplant. 11, 1633–1644 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Webster, A. C., Lee, V. W., Chapman, J. R. & Craig, J. C. Target of rapamycin inhibitors (TOR-I; sirolimus and everolimus) for primary immunosuppression in kidney transplant recipients. Cochrane Database Syst. Rev., CD004290 (2006).

  111. Lim, W. H. et al. A systematic review of conversion from calcineurin inhibitor to mammalian target of rapamycin inhibitors for maintenance immunosuppression in kidney transplant recipients. Am. J. Transplant. 14, 2106–2119 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Su, L. et al. Everolimus-based calcineurin-inhibitor sparing regimens for kidney transplant recipients: a systematic review and meta-analysis. Int. Urol. Nephrol. 46, 2035–2044 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Murakami, N., Riella, L. V. & Funakoshi, T. Risk of metabolic complications in kidney transplantation after conversion to mTOR inhibitor: a systematic review and meta-analysis. Am. J. Transplant. 14, 2317–2327 (2014).

    Article  CAS  PubMed  Google Scholar 

  114. Mandelbrot, D. A. et al. Effect of ramipril on urinary protein excretion in maintenance renal transplant patients converted to sirolimus. Am. J. Transplant. 15, 3174–3184 (2015).

    Article  CAS  PubMed  Google Scholar 

  115. Lewkowicz, N. et al. Dysfunction of CD4+CD25high T regulatory cells in patients with recurrent aphthous stomatitis. J. Oral Pathol. Med. 37, 454–461 (2008).

    Article  PubMed  Google Scholar 

  116. Sabbatini, M. et al. Oscillatory mTOR inhibition and Treg increase in kidney transplantation. Clin. Exp. Immunol. 182, 230–240 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Morelon, E. et al. Characteristics of sirolimus-associated interstitial pneumonitis in renal transplant patients. Transplantation 72, 787–790 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Joannides, R. et al. Immunosuppressant regimen based on sirolimus decreases aortic stiffness in renal transplant recipients in comparison to cyclosporine. Am. J. Transplant. 11, 2414–2422 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. Thierry, A. et al. Long-term impact of subclinical inflammation diagnosed by protocol biopsy one year after renal transplantation. Am. J. Transplant. 11, 2153–2161 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Heilman, R. L. et al. Results of a prospective randomized trial of sirolimus conversion in kidney transplant recipients on early corticosteroid withdrawal. Transplantation 92, 767–773 (2011).

    Article  CAS  PubMed  Google Scholar 

  121. Glotz, D. et al. Thymoglobulin induction and sirolimus versus tacrolimus in kidney transplant recipients receiving mycophenolate mofetil and steroids. Transplantation 89, 1511–1517 (2010).

    Article  CAS  PubMed  Google Scholar 

  122. Li, H. & Pauza, C. D. Rapamycin increases the yield and effector function of human γδ T cells stimulated in vitro. Cancer Immunol. Immunother. 60, 361–370 (2011).

    Article  CAS  PubMed  Google Scholar 

  123. Clippinger, A. J., Maguire, T. G. & Alwine, J. C. The changing role of mTOR kinase in the maintenance of protein synthesis during human cytomegalovirus infection. J. Virol. 85, 3930–3939 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Araki, K. et al. mTOR regulates memory CD8 T-cell differentiation. Nature 460, 108–112 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hirsch, H. H., Yakhontova, K., Lu, M. & Manzetti, J. BK polyomavirus replication in renal tubular epithelial cells is inhibited by sirolimus, but activated by tacrolimus through a pathway involving FKBP-12. Am. J. Transplant. 16, 821–832 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ferrer, I. R. et al. Cutting edge: rapamycin augments pathogen-specific but not graft-reactive CD8+ T cell responses. J. Immunol. 185, 2004–2008 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Nashan, B. et al. Review of cytomegalovirus infection findings with mammalian target of rapamycin inhibitor-based immunosuppressive therapy in de novo renal transplant recipients. Transplantation 93, 1075–1085 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Tedesco-Silva, H. et al. Reduced incidence of cytomegalovirus infection in kidney transplant recipients receiving everolimus and reduced tacrolimus doses. Am. J. Transplant. 15, 2655–2664 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Polanco, N. et al. Everolimus-based immunosuppression therapy for BK virus nephropathy. Transplant Proc. 47, 57–61 (2015).

    Article  CAS  PubMed  Google Scholar 

  130. Knoll, G. A. et al. Effect of sirolimus on malignancy and survival after kidney transplantation: systematic review and meta-analysis of individual patient data. BMJ 349, g6679 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Diekmann, F. et al. Treatment with sirolimus is associated with less weight gain after kidney transplantation. Transplantation 96, 480–486 (2013).

    Article  CAS  PubMed  Google Scholar 

  132. Halleck, F. et al. An evaluation of sirolimus in renal transplantation. Expert Opin. Drug Metab. Toxicol. 8, 1337–1356 (2012).

    Article  CAS  PubMed  Google Scholar 

  133. Susantitaphong, P. et al. World incidence of AKI: a meta-analysis. Clin. J. Am. Soc. Nephrol. 8, 1482–1493 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Rimes-Stigare, C. et al. Evolution of chronic renal impairment and long-term mortality after de novo acute kidney injury in the critically ill; a Swedish multi-centre cohort study. Crit. Care 19, 221 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Himmelfarb, J. & Ikizler, T. A. Acute kidney injury: changing lexicography, definitions, and epidemiology. Kidney Int. 71, 971–976 (2007).

    Article  CAS  PubMed  Google Scholar 

  136. Smith, K. D. et al. Delayed graft function and cast nephropathy associated with tacrolimus plus rapamycin use. J. Am. Soc. Nephrol. 14, 1037–1045 (2003).

    Article  CAS  PubMed  Google Scholar 

  137. McTaggart, R. A. et al. Sirolimus prolongs recovery from delayed graft function after cadaveric renal transplantation. Am. J. Transplant. 3, 416–423 (2003).

    Article  CAS  PubMed  Google Scholar 

  138. Loverre, A. et al. Ischemia-reperfusion induces glomerular and tubular activation of proinflammatory and antiapoptotic pathways: differential modulation by rapamycin. J. Am. Soc. Nephrol. 15, 2675–2686 (2004).

    Article  CAS  PubMed  Google Scholar 

  139. Goncalves, G. M. et al. The role of immunosuppressive drugs in aggravating renal ischemia and reperfusion injury. Transplant Proc. 39, 417–420 (2007).

    Article  CAS  PubMed  Google Scholar 

  140. Fuller, T. F. et al. Sirolimus delays recovery of rat kidney transplants after ischemia-reperfusion injury. Transplantation 76, 1594–1599 (2003).

    Article  CAS  PubMed  Google Scholar 

  141. Inman, S. R. et al. Rapamycin preserves renal function compared with cyclosporine A after ischemia/reperfusion injury. Urology 62, 750–754 (2003).

    Article  PubMed  Google Scholar 

  142. Cicora, F. et al. Sirolimus in kidney transplant donors and clinical and histologic improvement in recipients: rat model. Transplant. Proc. 42, 365–370 (2010).

    Article  CAS  PubMed  Google Scholar 

  143. Lieberthal, W. et al. Rapamycin impairs recovery from acute renal failure: role of cell-cycle arrest and apoptosis of tubular cells. Am. J. Physiol. Renal Physiol. 281, F693–F706 (2001).

    Article  CAS  PubMed  Google Scholar 

  144. Lui, S. L. et al. Effect of rapamycin on renal ischemia-reperfusion injury in mice. Transpl. Int. 19, 834–839 (2006).

    Article  CAS  PubMed  Google Scholar 

  145. Yang, B. et al. Inflammation and caspase activation in long-term renal ischemia/reperfusion injury and immunosuppression in rats. Kidney Int. 68, 2050–2067 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. Khan, S. et al. Rapamycin confers preconditioning-like protection against ischemia-reperfusion injury in isolated mouse heart and cardiomyocytes. J. Mol. Cell Cardiol. 41, 256–264 (2006).

    Article  CAS  PubMed  Google Scholar 

  147. Cicora, F. et al. Preconditioning donor with a combination of tacrolimus and rapamacyn to decrease ischaemia-reperfusion injury in a rat syngenic kidney transplantation model. Clin. Exp. Immunol. 167, 169–177 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Viklicky, O. et al. Effect of sirolimus on renal ischaemia/reperfusion injury in normotensive and hypertensive rats. Transpl. Int. 17, 432–441 (2004).

    CAS  PubMed  Google Scholar 

  149. Goncalves, G. M. et al. The role of heme oxygenase 1 in rapamycin-induced renal dysfunction after ischemia and reperfusion injury. Kidney Int. 70, 1742–1749 (2006).

    Article  CAS  PubMed  Google Scholar 

  150. Nakagawa, S., Nishihara, K., Inui, K. & Masuda, S. Involvement of autophagy in the pharmacological effects of the mTOR inhibitor everolimus in acute kidney injury. Eur. J. Pharmacol. 696, 143–154 (2012).

    Article  CAS  PubMed  Google Scholar 

  151. Kezic, A., Thaiss, F., Becker, J. U., Tsui, T. Y. & Bajcetic, M. Effects of everolimus on oxidative stress in kidney model of ischemia/reperfusion injury. Am. J. Nephrol. 37, 291–301 (2013).

    Article  CAS  PubMed  Google Scholar 

  152. Izzedine, H. et al. Acute tubular necrosis associated with mTOR inhibitor therapy: a real entity biopsy-proven. Ann. Oncol. 24, 2421–2425 (2013).

    Article  CAS  PubMed  Google Scholar 

  153. Rai, P. et al. mTOR plays a critical role in p53-induced oxidative kidney cell injury in HIVAN. Am. J. Physiol. Renal Physiol. 305, F343–354 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Axelsson, J., Rippe, A. & Rippe, B. Acute hyperglycemia induces rapid, reversible increases in glomerular permeability in nondiabetic rats. Am. J. Physiol. Renal Physiol. 298, F1306–F1312 (2010).

    Article  CAS  PubMed  Google Scholar 

  155. Kuwabara, A., Satoh, M., Tomita, N., Sasaki, T. & Kashihara, N. Deterioration of glomerular endothelial surface layer induced by oxidative stress is implicated in altered permeability of macromolecules in Zucker fatty rats. Diabetologia 53, 2056–2065 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. McCarthy, E. T. et al. TNF-α increases albumin permeability of isolated rat glomeruli through the generation of superoxide. J. Am. Soc. Nephrol. 9, 433–438 (1998).

    CAS  PubMed  Google Scholar 

  157. Axelsson, J., Rippe, A., Oberg, C. M. & Rippe, B. Rapid, dynamic changes in glomerular permeability to macromolecules during systemic angiotensin II (ANG II) infusion in rats. Am. J. Physiol. Renal Physiol. 303, F790–F799 (2012).

    Article  CAS  PubMed  Google Scholar 

  158. Axelsson, J. Rippe, A. & Rippe, B. mTOR inhibition with temsirolimus causes acute increases in glomerular permeability, but inhibits the dynamic permeability actions of puromycin aminonucleoside. Am. J. Physiol. Renal Physiol. 308, F1056–F1064 (2015).

    Article  CAS  PubMed  Google Scholar 

  159. Stylianou, K. et al. Rapamycin induced ultrastructural and molecular alterations in glomerular podocytes in healthy mice. Nephrol. Dial. Transplant. 27, 3141–3148 (2012).

    Article  CAS  PubMed  Google Scholar 

  160. DiJoseph, J. F., Sharma, R. N. & Chang, J. Y. The effect of rapamycin on kidney function in the Sprague-Dawley rat. Transplantation 53, 507–513 (1992).

    Article  CAS  PubMed  Google Scholar 

  161. Di Joseph, J. F. & Sehgal, S. N. Functional and histopathologic effects of rapamycin on mouse kidney. Immunopharmacol. Immunotoxicol. 15, 45–56 (1993).

    Article  CAS  PubMed  Google Scholar 

  162. Andoh, T. F., Burdmann, E. A., Fransechini, N., Houghton, D. C. & Bennett, W. M. Comparison of acute rapamycin nephrotoxicity with cyclosporine and FK506. Kidney Int. 50, 1110–1117 (1996).

    Article  CAS  PubMed  Google Scholar 

  163. DiJoseph, J. F., Mihatsch, M. J. & Sehgal, S. N. Renal effects of rapamycin in the spontaneously hypertensive rat. Transpl. Int. 7, 83–88 (1994).

    Article  CAS  PubMed  Google Scholar 

  164. Grahammer, F., Wanner, N. & Huber, T. B. mTOR controls kidney epithelia in health and disease. Nephrol. Dial. Transplant. 29 (Suppl. 1), i9–i18 (2014).

    Article  PubMed  Google Scholar 

  165. Mao, J. et al. Mammalian target of rapamycin complex 1 activation in podocytes promotes cellular crescent formation. Am. J. Physiol. Renal Physiol. 307, F1023–F1032 (2014).

    Article  CAS  PubMed  Google Scholar 

  166. Jeruschke, S. et al. Protective effects of the mTOR inhibitor everolimus on cytoskeletal injury in human podocytes are mediated by RhoA signaling. PLoS ONE 8, e55980 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Letavernier, E. et al. Sirolimus interacts with pathways essential for podocyte integrity. Nephrol. Dial. Transplant. 24, 630–638 (2009).

    Article  CAS  PubMed  Google Scholar 

  168. Muller-Krebs, S. et al. Cellular effects of everolimus and sirolimus on podocytes. PLoS ONE 8, e80340 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Vollenbroker, B. et al. mTOR regulates expression of slit diaphragm proteins and cytoskeleton structure in podocytes. Am. J. Physiol. Renal Physiol. 296, F418–F426 (2009).

    Article  CAS  PubMed  Google Scholar 

  170. Canaud, G. et al. AKT2 is essential to maintain podocyte viability and function during chronic kidney disease. Nat. Med. 19, 1288–1296 (2013).

    Article  CAS  PubMed  Google Scholar 

  171. Narres, M. et al. The incidence of end-stage renal disease in the diabetic (compared to the non-diabetic) population: A systematic review. PLoS ONE 11, e0147329 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Ibrahim, H. N. & Hostetter, T. H. Diabetic nephropathy. J. Am. Soc. Nephrol. 8, 487–493 (1997).

    CAS  PubMed  Google Scholar 

  173. Mori, H. et al. The mTOR pathway is highly activated in diabetic nephropathy and rapamycin has a strong therapeutic potential. Biochem. Biophys. Res. Commun. 384, 471–475 (2009).

    Article  CAS  PubMed  Google Scholar 

  174. Chen, J. K., Chen, J., Thomas, G., Kozma, S. C. & Harris, R. C. S6 kinase 1 knockout inhibits uninephrectomy- or diabetes-induced renal hypertrophy. Am. J. Physiol. Renal Physiol. 297, F585–F593 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Sakaguchi, M. et al. Inhibition of mTOR signaling with rapamycin attenuates renal hypertrophy in the early diabetic mice. Biochem. Biophys. Res. Commun. 340, 296–301 (2006).

    Article  CAS  PubMed  Google Scholar 

  176. Yang, Y. et al. Rapamycin prevents early steps of the development of diabetic nephropathy in rats. Am. J. Nephrol. 27, 495–502 (2007).

    Article  CAS  PubMed  Google Scholar 

  177. Lloberas, N. et al. Mammalian target of rapamycin pathway blockade slows progression of diabetic kidney disease in rats. J. Am. Soc. Nephrol. 17, 1395–1404 (2006).

    Article  CAS  PubMed  Google Scholar 

  178. Eid, A. A. et al. Mammalian target of rapamycin regulates Nox4-mediated podocyte depletion in diabetic renal injury. Diabetes 62, 2935–2947 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Stylianou, K. et al. The PI3K/Akt/mTOR pathway is activated in murine lupus nephritis and downregulated by rapamycin. Nephrol. Dial. Transplant. 26, 498–508 (2011).

    Article  CAS  PubMed  Google Scholar 

  180. Lui, S. L. et al. Rapamycin attenuates the severity of established nephritis in lupus-prone NZB/W F1 mice. Nephrol. Dial. Transplant. 23, 2768–2776 (2008).

    Article  CAS  PubMed  Google Scholar 

  181. Lui, S. L. et al. Rapamycin prevents the development of nephritis in lupus-prone NZB/W F1 mice. Lupus 17, 305–313 (2008).

    Article  CAS  PubMed  Google Scholar 

  182. Ramos-Barron, A. et al. Prevention of murine lupus disease in (NZBxNZW)F1 mice by sirolimus treatment. Lupus 16, 775–781 (2007).

    Article  CAS  PubMed  Google Scholar 

  183. Warner, L. M., Adams, L. M. & Sehgal, S. N. Rapamycin prolongs survival and arrests pathophysiologic changes in murine systemic lupus erythematosus. Arthritis Rheum. 37, 289–297 (1994).

    Article  CAS  PubMed  Google Scholar 

  184. Yap, D. Y., Ma, M. K., Tang, C. S. & Chan, T. M. Proliferation signal inhibitors in the treatment of lupus nephritis: preliminary experience. Nephrol. (Carlton) 17, 676–680 (2012).

    Article  CAS  Google Scholar 

  185. Fernandez, D., Bonilla, E., Mirza, N., Niland, B. & Perl, A. Rapamycin reduces disease activity and normalizes T cell activation-induced calcium fluxing in patients with systemic lupus erythematosus. Arthritis Rheum. 54, 2983–2988 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Greka, A. & Mundel, P. Cell biology and pathology of podocytes. Annu. Rev. Physiol. 74, 299–323 (2012).

    Article  CAS  PubMed  Google Scholar 

  187. Ito, N. et al. mTORC1 activation triggers the unfolded protein response in podocytes and leads to nephrotic syndrome. Lab Invest. 91, 1584–1595 (2011).

    Article  CAS  PubMed  Google Scholar 

  188. Lui, S. L. et al. Rapamycin attenuates the severity of murine adriamycin nephropathy. Am. J. Nephrol. 29, 342–352 (2009).

    Article  CAS  PubMed  Google Scholar 

  189. Ramadan, R. et al. Early treatment with everolimus exerts nephroprotective effect in rats with adriamycin-induced nephrotic syndrome. Nephrol. Dial. Transplant. 27, 2231–2241 (2012).

    Article  CAS  PubMed  Google Scholar 

  190. Keller, K. et al. Everolimus inhibits glomerular endothelial cell proliferation and VEGF, but not long-term recovery in experimental thrombotic microangiopathy. Nephrol. Dial. Transplant. 21, 2724–2735 (2006).

    Article  CAS  PubMed  Google Scholar 

  191. Bagchus, W. M., Hoedemaeker, P. J., Rozing, J. & Bakker, W. W. Glomerulonephritis induced by monoclonal anti-Thy 1.1 antibodies. A sequential histological and ultrastructural study in the rat. Lab Invest. 55, 680–687 (1986).

    CAS  PubMed  Google Scholar 

  192. Wittmann, S. et al. The mTOR inhibitor everolimus attenuates the time course of chronic anti-Thy1 nephritis in the rat. Nephron Exp. Nephrol. 108, e45–e56 (2008).

    Article  CAS  PubMed  Google Scholar 

  193. Daniel, C., Ziswiler, R., Frey, B., Pfister, M. & Marti, H. P. Proinflammatory effects in experimental mesangial proliferative glomerulonephritis of the immunosuppressive agent SDZ RAD, a rapamycin derivative. Exp. Nephrol. 8, 52–62 (2000).

    Article  CAS  PubMed  Google Scholar 

  194. Daniel, C. et al. Mechanisms of everolimus-induced glomerulosclerosis after glomerular injury in the rat. Am. J. Transplant. 5, 2849–2861 (2005).

    Article  CAS  PubMed  Google Scholar 

  195. Vogelbacher, R., Wittmann, S., Braun, A., Daniel, C. & Hugo, C. The mTOR inhibitor everolimus induces proteinuria and renal deterioration in the remnant kidney model in the rat. Transplantation 84, 1492–1499 (2007).

    Article  CAS  PubMed  Google Scholar 

  196. Tian, J., Wang, Y., Liu, X., Zhou, X. & Li, R. Rapamycin ameliorates IgA nephropathy via cell cycle-dependent mechanisms. Exp. Biol. Med. (Maywood) 240, 936–945 (2015).

    Article  CAS  Google Scholar 

  197. Heymann, W., Hackel, D. B., Harwood, S., Wilson, S. G. & Hunter, J. L. Production of nephrotic syndrome in rats by Freund's adjuvants and rat kidney suspensions. Proc. Soc. Exp. Biol. Med. 100, 660–664 (1959).

    Article  CAS  PubMed  Google Scholar 

  198. Farquhar, M. G., Saito, A., Kerjaschki, D. & Orlando, R. A. The Heymann nephritis antigenic complex: megalin (gp330) and RAP. J. Am. Soc. Nephrol. 6, 35–47 (1995).

    CAS  PubMed  Google Scholar 

  199. Naumovic, R. et al. Effects of rapamycin on active Heymann nephritis. Am. J. Nephrol. 27, 379–389 (2007).

    Article  CAS  PubMed  Google Scholar 

  200. Stratakis, S. et al. Rapamycin ameliorates proteinuria and restores nephrin and podocin expression in experimental membranous nephropathy. Clin. Dev. Immunol. 941, 93 (2013).

    Google Scholar 

  201. Kurayama, R. et al. Role of amino acid transporter LAT2 in the activation of mTORC1 pathway and the pathogenesis of crescentic glomerulonephritis. Lab Invest. 91, 992–1006 (2011).

    Article  CAS  PubMed  Google Scholar 

  202. Hochegger, K. et al. Differential effects of rapamycin in anti-GBM glomerulonephritis. J. Am. Soc. Nephrol. 19, 1520–1529 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Kirsch, A. H. et al. The mTOR-inhibitor rapamycin mediates proteinuria in nephrotoxic serum nephritis by activating the innate immune response. Am. J. Physiol. Renal Physiol. 303, F569–F575 (2012).

    Article  CAS  PubMed  Google Scholar 

  204. Cruzado, J. M. et al. Low-dose sirolimus combined with angiotensin-converting enzyme inhibitor and statin stabilizes renal function and reduces glomerular proliferation in poor prognosis IgA nephropathy. Nephrol. Dial. Transplant. 26, 3596–3602 (2011).

    Article  CAS  PubMed  Google Scholar 

  205. Tumlin, J. A. et al. A prospective, open-label trial of sirolimus in the treatment of focal segmental glomerulosclerosis. Clin. J. Am. Soc. Nephrol. 1, 109–116 (2006).

    Article  CAS  PubMed  Google Scholar 

  206. Cho, M. E., Hurley, J. K. & Kopp, J. B. Sirolimus therapy of focal segmental glomerulosclerosis is associated with nephrotoxicity. Am. J. Kidney Dis. 49, 310–317 (2007).

    Article  CAS  PubMed  Google Scholar 

  207. Letavernier, E. et al. High sirolimus levels may induce focal segmental glomerulosclerosis de novo. Clin. J. Am. Soc. Nephrol. 2, 326–333 (2007).

    Article  CAS  PubMed  Google Scholar 

  208. Patel, P., Pal, S., Ashley, C., Sweny, P. & Burns, A. Combination therapy with sirolimus (rapamycin) and tacrolimus (FK-506) in treatment of refractory minimal change nephropathy, a clinical case report. Nephrol. Dial. Transplant. 20, 985–987 (2005).

    Article  PubMed  Google Scholar 

  209. Ong, A. C., Devuyst, O., Knebelmann, B. & Walz, G. Autosomal dominant polycystic kidney disease: the changing face of clinical management. Lancet 385, 1993–2002 (2015).

    Article  PubMed  Google Scholar 

  210. Grantham, J. J. Clinical practice. Autosomal dominant polycystic kidney disease. N. Engl. J. Med. 359, 1477–1485 (2008).

    Article  CAS  PubMed  Google Scholar 

  211. Hildebrandt, F., Benzing, T. & Katsanis, N. Ciliopathies. N. Engl. J. Med. 364, 1533–1543 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Torres, V. E. et al. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N. Engl. J. Med. 367, 2407–2418 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Tao, Y., Kim, J., Schrier, R. W. & Edelstein, C. L. Rapamycin markedly slows disease progression in a rat model of polycystic kidney disease. J. Am. Soc. Nephrol. 16, 46–51 (2005).

    Article  CAS  PubMed  Google Scholar 

  214. Shillingford, J. M. et al. The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc. Natl Acad. Sci. USA 103, 5466–5471 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Renken, C., Fischer, D. C., Kundt, G., Gretz, N. & Haffner, D. Inhibition of mTOR with sirolimus does not attenuate progression of liver and kidney disease in PCK rats. Nephrol. Dial. Transplant. 26, 92–100 (2011).

    Article  CAS  PubMed  Google Scholar 

  216. Belibi, F., Ravichandran, K., Zafar, I., He, Z. & Edelstein, C. L. mTORC1/2 and rapamycin in female Han:SPRD rats with polycystic kidney disease. Am. J. Physiol. Renal Physiol. 300, F236–F244 (2011).

    Article  CAS  PubMed  Google Scholar 

  217. Distefano, G. et al. Polycystin-1 regulates extracellular signal-regulated kinase-dependent phosphorylation of tuberin to control cell size through mTOR and its downstream effectors S6K and 4EBP1. Mol. Cell. Biol. 29, 2359–2371 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Boehlke, C. et al. Primary cilia regulate mTORC1 activity and cell size through Lkb1. Nat. Cell Biol. 12, 1115–1122 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Boletta, A. Emerging evidence of a link between the polycystins and the mTOR pathways. Pathog. 2, 6 (2009).

    Google Scholar 

  220. Takiar, V. et al. Activating AMP-activated protein kinase (AMPK) slows renal cystogenesis. Proc. Natl Acad. Sci. USA 108, 2462–2467 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Huber, T. B., Walz, G. & Kuehn, E. W. mTOR and rapamycin in the kidney: signaling and therapeutic implications beyond immunosuppression. Kidney Int. 79, 502–511 (2011).

    Article  CAS  PubMed  Google Scholar 

  222. Serra, A. L. et al. Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. N. Engl. J. Med. 363, 820–829 (2010).

    Article  CAS  PubMed  Google Scholar 

  223. Walz, G. et al. Everolimus in patients with autosomal dominant polycystic kidney disease. N. Engl. J. Med. 363, 830–840 (2010).

    Article  CAS  PubMed  Google Scholar 

  224. Grantham, J. J., Bennett, W. M. & Perrone, R. D. mTOR inhibitors and autosomal dominant polycystic kidney disease. N. Engl. J. Med. 364, 286–287 (2011).

    Article  CAS  PubMed  Google Scholar 

  225. Levey, A. S. & Stevens, L. A. mTOR inhibitors and autosomal dominant polycystic kidney disease. N. Engl. J. Med. 364, 287 (2011).

    CAS  PubMed  Google Scholar 

  226. Novalic, Z. et al. Dose-dependent effects of sirolimus on mTOR signaling and polycystic kidney disease. J. Am. Soc. Nephrol. 23, 842–853 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Perico, N. et al. Sirolimus therapy to halt the progression of ADPKD. J. Am. Soc. Nephrol. 21, 1031–1040 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Riegersperger, M., Herkner, H. & Sunder-Plassmann, G. Pulsed oral sirolimus in advanced autosomal-dominant polycystic kidney disease (Vienna RAP Study): study protocol for a randomized controlled trial. Trials 16, 182 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Braun, W. E., Schold, J. D., Stephany, B. R., Spirko, R. A. & Herts, B. R. Low-dose rapamycin (sirolimus) effects in autosomal dominant polycystic kidney disease: an open-label randomized controlled pilot study. Clin. J. Am. Soc. Nephrol. 9, 881–888 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Ravichandran, K. et al. An mTOR anti-sense oligonucleotide decreases polycystic kidney disease in mice with a targeted mutation in Pkd2. Hum. Mol. Genet. 23, 4919–4931 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Jain, S., Bicknell, G. R., Whiting, P. H. & Nicholson, M. L. Rapamycin reduces expression of fibrosis-associated genes in an experimental model of renal ischaemia reperfusion injury. Transplant Proc. 33, 556–558 (2001).

    Article  CAS  PubMed  Google Scholar 

  232. Jolicoeur, E. M. et al. Combination therapy of mycophenolate mofetil and rapamycin in prevention of chronic renal allograft rejection in the rat. Transplantation 75, 54–59 (2003).

    Article  CAS  PubMed  Google Scholar 

  233. Rangan, G. K. & Coombes, J. D. Renoprotective effects of sirolimus in non-immune initiated focal segmental glomerulosclerosis. Nephrol. Dial. Transplant. 22, 2175–2182 (2007).

    Article  CAS  PubMed  Google Scholar 

  234. Wu, M. J. et al. Rapamycin attenuates unilateral ureteral obstruction-induced renal fibrosis. Kidney Int. 69, 2029–2036 (2006).

    Article  CAS  PubMed  Google Scholar 

  235. Bonegio, R. G. et al. Rapamycin ameliorates proteinuria-associated tubulointerstitial inflammation and fibrosis in experimental membranous nephropathy. J. Am. Soc. Nephrol. 16, 2063–2072 (2005).

    Article  CAS  PubMed  Google Scholar 

  236. Kramer, S. et al. Low-dose mTOR inhibition by rapamycin attenuates progression in anti-thy1-induced chronic glomerulosclerosis of the rat. Am. J. Physiol. Renal Physiol. 294, F440–F449 (2008).

    Article  CAS  PubMed  Google Scholar 

  237. Li, J. et al. Rictor/mTORC2 signaling mediates TGFβ1-induced fibroblast activation and kidney fibrosis. Kidney Int. 88, 515–527 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Grahammer, F. Halting renal fibrosis: an unexpected role for mTORC2 signaling. Kidney Int. 88, 437–439 (2015).

    Article  CAS  PubMed  Google Scholar 

  239. Chen, G. et al. Rapamycin ameliorates kidney fibrosis by inhibiting the activation of mTOR signaling in interstitial macrophages and myofibroblasts. PLoS ONE 7, e33626 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Rahimi, R. A. et al. Distinct roles for mammalian target of rapamycin complexes in the fibroblast response to transforming growth factor-β. Cancer Res. 69, 84–93 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Jiang, L. et al. Rheb/mTORC1 signaling promotes kidney fibroblast activation and fibrosis. J. Am. Soc. Nephrol. 24, 1114–1126 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Dey, N., Ghosh-Choudhury, N., Kasinath, B. S. & Choudhury, G. G. TGFβ-stimulated microRNA-21 utilizes PTEN to orchestrate AKT/mTORC1 signaling for mesangial cell hypertrophy and matrix expansion. PLoS ONE 7, e42316 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Koch, M., Mengel, M., Poehnert, D. & Nashan, B. Effects of everolimus on cellular and humoral immune processes leading to chronic allograft nephropathy in a rat model with sensitized recipients. Transplantation 83, 498–505 (2007).

    Article  CAS  PubMed  Google Scholar 

  244. Viklicky, O. et al. SDZ-RAD prevents manifestation of chronic rejection in rat renal allografts. Transplantation 69, 497–502 (2000).

    Article  CAS  PubMed  Google Scholar 

  245. Lutz, J., Zou, H., Liu, S., Antus, B. & Heemann, U. Apoptosis and treatment of chronic allograft nephropathy with everolimus. Transplantation 76, 508–515 (2003).

    Article  CAS  PubMed  Google Scholar 

  246. Luo, L., Sun, Z. & Luo, G. Rapamycin is less fibrogenic than Cyclosporin A as demonstrated in a rat model of chronic allograft nephropathy. J. Surg. Res. 179, e255–263 (2013).

    Article  CAS  PubMed  Google Scholar 

  247. Liu, Q. et al. Characterization of Torin2, an ATP-competitive inhibitor of mTOR, ATM, and ATR. Cancer Res. 73, 2574–2586 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Palin, N. K., Savikko, J. & Koskinen, P. K. Sirolimus inhibits lymphangiogenesis in rat renal allografts, a novel mechanism to prevent chronic kidney allograft injury. Transpl. Int. 26, 195–205 (2013).

    Article  CAS  PubMed  Google Scholar 

  249. Ghosh, A. K. & Vaughan, D. E. PAI-1 in tissue fibrosis. J. Cell. Physiol. 227, 493–507 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Pontrelli, P. et al. Rapamycin inhibits PAI-1 expression and reduces interstitial fibrosis and glomerulosclerosis in chronic allograft nephropathy. Transplantation 85, 125–134 (2008).

    Article  CAS  PubMed  Google Scholar 

  251. Diekmann, F. et al. Mammalian target of rapamycin inhibition halts the progression of proteinuria in a rat model of reduced renal mass. J. Am. Soc. Nephrol. 18, 2653–2660 (2007).

    Article  CAS  PubMed  Google Scholar 

  252. Kurdian, M. et al. Delayed mTOR inhibition with low dose of everolimus reduces TGFβ expression, attenuates proteinuria and renal damage in the renal mass reduction model. PLoS ONE 7, e32516 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Budde, K. & Gaedeke, J. Tuberous sclerosis complex-associated angiomyolipomas: focus on mTOR inhibition. Am. J. Kidney Dis. 59, 276–283 (2012).

    Article  CAS  PubMed  Google Scholar 

  254. Hallett, L., Foster, T., Liu, Z., Blieden, M. & Valentim, J. Burden of disease and unmet needs in tuberous sclerosis complex with neurological manifestations: systematic review. Curr. Med. Res. Opin. 27, 1571–1583 (2011).

    Article  PubMed  Google Scholar 

  255. Osborne, J. P., Fryer, A. & Webb, D. Epidemiology of tuberous sclerosis. Ann. NY Acad. Sci. 615, 125–127 (1991).

    Article  CAS  PubMed  Google Scholar 

  256. Curatolo, P. et al. The role of mTOR inhibitors in the treatment of patients with tuberous sclerosis complex: Evidence-based and expert opinions. Drugs 76, 551–565 (2016).

    Article  CAS  PubMed  Google Scholar 

  257. Kotulska, K., Borkowska, J. & Jozwiak, S. Possible prevention of tuberous sclerosis complex lesions. Pediatrics 132, e239–242 (2013).

    Article  PubMed  Google Scholar 

  258. Bissler, J. J. et al. Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N. Engl. J. Med. 358, 140–151 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Dabora, S. L. et al. Multicenter phase 2 trial of sirolimus for tuberous sclerosis: kidney angiomyolipomas and other tumors regress and VEGF-D levels decrease. PLoS ONE 6, e23379 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Cabrera-Lopez, C. et al. Assessing the effectiveness of rapamycin on angiomyolipoma in tuberous sclerosis: a two years trial. Orphanet J. Rare Dis. 7, 87 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  261. Staehler, M. et al. Nephron-sparing resection of angiomyolipoma after sirolimus pretreatment in patients with tuberous sclerosis. Int. Urol. Nephrol. 44, 1657–1661 (2012).

    Article  PubMed  Google Scholar 

  262. Bissler, J. J. et al. Everolimus for angiomyolipoma associated with tuberous sclerosis complex or sporadic lymphangioleiomyomatosis (EXIST-2): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet 381, 817–824 (2013).

    Article  CAS  PubMed  Google Scholar 

  263. Bissler, J. J. et al. Everolimus for renal angiomyolipoma in patients with tuberous sclerosis complex or sporadic lymphangioleiomyomatosis: extension of a randomized controlled trial. Nephrol. Dial. Transplant. 31, 111–119 (2016).

    Article  CAS  PubMed  Google Scholar 

  264. Pal, S. K. & Quinn, D. I. Differentiating mTOR inhibitors in renal cell carcinoma. Cancer Treat. Rev. 39, 709–719 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Hutson, T. E. et al. Randomized phase III trial of temsirolimus versus sorafenib as second-line therapy after sunitinib in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 32, 760–767 (2014).

    Article  CAS  PubMed  Google Scholar 

  266. Flaherty, K. T. et al. BEST: a randomized Phase II study of vascular endothelial growth factor, RAF kinase, and mammalian target of rapamycin combination targeted therapy with bevacizumab, sorafenib, and temsirolimus in advanced renal cell carcinoma—a trial of the ECOG-ACRIN Cancer Research Group (E2804). J. Clin. Oncol. 33, 2384–2391 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Wander, S. A., Hennessy, B. T. & Slingerland, J. M. Next-generation mTOR inhibitors in clinical oncology: how pathway complexity informs therapeutic strategy. J. Clin. Invest. 121, 1231–1241 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Zheng, B. et al. Pre-clinical evaluation of AZD-2014, a novel mTORC1/2 dual inhibitor, against renal cell carcinoma. Cancer Lett. 357, 468–475 (2015).

    Article  CAS  PubMed  Google Scholar 

  269. Powles, T. et al. A randomised Phase 2 Study of AZD2014 versus everolimus in patients with VEGF-refractory metastatic clear cell renal cancer. Eur. Urol. 69, 450–456 (2015).

    Article  CAS  PubMed  Google Scholar 

  270. Guba, M. et al. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat. Med. 8, 128–135 (2002).

    Article  CAS  PubMed  Google Scholar 

  271. Ghosh, A. P. et al. Point mutations of the mTOR-RHEB pathway in renal cell carcinoma. Oncotarget 6, 17895–17910 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  272. Nichols, L. A., Adang, L. A. & Kedes, D. H. Rapamycin blocks production of KSHV/HHV8: insights into the anti-tumor activity of an immunosuppressant drug. PLoS ONE 6, e14535 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Roy, S. & Arav-Boger, R. New cell-signaling pathways for controlling cytomegalovirus replication. Am. J. Transplant. 14, 1249–1258 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Stallone, G. et al. Sirolimus for Kaposi's sarcoma in renal-transplant recipients. N. Engl. J. Med. 352, 1317–1323 (2005).

    Article  CAS  PubMed  Google Scholar 

  275. Geissler, E. K. Post-transplantation malignancies: here today, gone tomorrow? Nat. Rev. Clin. Oncol. 12, 705–717 (2015).

    Article  CAS  PubMed  Google Scholar 

  276. Geissler, E. K. et al. Sirolimus use in liver transplant recipients with hepatocellular carcinoma: a randomized, multicenter, open-label Phase 3 trial. Transplantation 100, 116–125 (2016).

    Article  CAS  PubMed  Google Scholar 

  277. Halleck, F. & Budde, K. Transplantation: Sirolimus for secondary SCC prevention in renal transplantation. Nat. Rev. Nephrol. 8, 687–689 (2012).

    Article  CAS  PubMed  Google Scholar 

  278. Hosseini-Moghaddam, S. M., Soleimanirahbar, A., Mazzulli, T., Rotstein, C. & Husain, S. Post renal transplantation Kaposi's sarcoma: a review of its epidemiology, pathogenesis, diagnosis, clinical aspects, and therapy. Transpl. Infect. Dis. 14, 338–345 (2012).

    Article  CAS  PubMed  Google Scholar 

  279. Campbell, S. B., Walker, R., Tai, S. S., Jiang, Q. & Russ, G. R. Randomized controlled trial of sirolimus for renal transplant recipients at high risk for nonmelanoma skin cancer. Am. J. Transplant. 12, 1146–1156 (2012).

    Article  CAS  PubMed  Google Scholar 

  280. Euvrard, S. et al. Sirolimus and secondary skin-cancer prevention in kidney transplantation. N. Engl. J. Med. 367, 329–339 (2012).

    Article  CAS  PubMed  Google Scholar 

  281. Di Paolo, S., Teutonico, A., Ranieri, E., Gesualdo, L. & Schena, P. F. Monitoring antitumor efficacy of rapamycin in Kaposi sarcoma. Am. J. Kidney Dis. 49, 462–470 (2007).

    Article  CAS  PubMed  Google Scholar 

  282. Yanik, E. L. et al. Sirolimus use and cancer incidence among US kidney transplant recipients. Am. J. Transplant. 15, 129–136 (2015).

    Article  CAS  PubMed  Google Scholar 

  283. Raich-Regue, D., Rosborough, B. R., Turnquist, H. R. & Thomson, A. W. Myeloid dendritic cell-specific mTORC2 deficiency enhances alloreactive Th1 and Th17 cell responses and skin graft rejection. Am J. Transplant 14, 18[Abstract 584] (2014).

    Google Scholar 

  284. Weichhart, T. et al. The TSC-mTOR signaling pathway regulates the innate inflammatory response. Immunity 29, 565–577 (2008).

    Article  CAS  PubMed  Google Scholar 

  285. Haidinger, M. et al. A versatile role of mammalian target of rapamycin in human dendritic cell function and differentiation. J. Immunol. 185, 3919–3931 (2010).

    Article  CAS  PubMed  Google Scholar 

  286. Cao, W. et al. Toll-like receptor-mediated induction of type I interferon in plasmacytoid dendritic cells requires the rapamycin-sensitive PI3K-mTOR-p70S6K pathway. Nat. Immunol. 9, 1157–1164 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Boor, P. P., Metselaar, H. J., Mancham, S., van der Laan, L. J. & Kwekkeboom, J. Rapamycin has suppressive and stimulatory effects on human plasmacytoid dendritic cell functions. Clin. Exp. Immunol. 174, 389–401 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Lee, K. et al. Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity 32, 743–753 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Berezhnoy, A., Castro, I., Levay, A., Malek, T. R. & Gilboa, E. Aptamer-targeted inhibition of mTOR in T cells enhances antitumor immunity. J. Clin. Invest. 124, 188–197 (2014).

    Article  CAS  PubMed  Google Scholar 

  290. Liacini, A., Seamone, M. E., Muruve, D. A. & Tibbles, L. A. Anti-BK virus mechanisms of sirolimus and leflunomide alone and in combination: toward a new therapy for BK virus infection. Transplantation 90, 1450–1457 (2010).

    Article  CAS  PubMed  Google Scholar 

  291. McInturff, A. M. et al. Mammalian target of rapamycin regulates neutrophil extracellular trap formation via induction of hypoxia-inducible factor 1α. Blood 120, 3118–3125 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Vitiello, D., Neagoe, P. E., Sirois, M. G. & White, M. Effect of everolimus on the immunomodulation of the human neutrophil inflammatory response and activation. Cell. Mol. Immunol. 12, 40–52 (2015).

    Article  CAS  PubMed  Google Scholar 

  293. He, Y. et al. Mammalian target of rapamycin and Rictor control neutrophil chemotaxis by regulating Rac/Cdc42 activity and the actin cytoskeleton. Mol. Biol. Cell 24, 3369–3380 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Liu, L., Gritz, D. & Parent, C. A. PKCβII acts downstream of chemoattractant receptors and mTORC2 to regulate cAMP production and myosin II activity in neutrophils. Mol. Biol. Cell 25, 1446–1457 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  295. Zhang, L. et al. Mammalian target of rapamycin complex 1 orchestrates invariant NKT cell differentiation and effector function. J. Immunol. 193, 1759–1765 (2014).

    Article  CAS  PubMed  Google Scholar 

  296. Wei, J., Yang, K. & Chi, H. Cutting edge: discrete functions of mTOR signaling in invariant NKT cell development and NKT17 fate decision. J. Immunol. 193, 4297–4301 (2014).

    Article  CAS  PubMed  Google Scholar 

  297. Zhang, S. et al. Constitutive reductions in mTOR alter cell size, immune cell development, and antibody production. Blood 117, 1228–1238 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Zhang, Y. et al. Rictor is required for early B cell development in bone marrow. PLoS ONE 9, e103970 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Lazorchak, A. S. et al. Sin1-mTORC2 suppresses rag and il7r gene expression through Akt2 in B cells. Mol. Cell 39, 433–443 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Wang, C. et al. Rapamycin-treated human endothelial cells preferentially activate allogeneic regulatory T cells. J. Clin. Invest. 123, 1677–1693 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Wang, C. et al. Rapamycin antagonizes TNF induction of VCAM-1 on endothelial cells by inhibiting mTORC2. J. Exp. Med. 211, 395–404 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Johnson, R. W. et al. Sirolimus allows early cyclosporine withdrawal in renal transplantation resulting in improved renal function and lower blood pressure. Transplantation 72, 777–786 (2001).

    Article  CAS  PubMed  Google Scholar 

  303. Gonwa, T. A., Hricik, D. E., Brinker, K., Grinyo, J. M. & Schena, F. P. Improved renal function in sirolimus-treated renal transplant patients after early cyclosporine elimination. Transplantation 74, 1560–1567 (2002).

    Article  CAS  PubMed  Google Scholar 

  304. Oberbauer, R. et al. Long-term improvement in renal function with sirolimus after early cyclosporine withdrawal in renal transplant recipients: 2-year results of the Rapamune Maintenance Regimen Study. Transplantation 76, 364–370 (2003).

    Article  CAS  PubMed  Google Scholar 

  305. Oberbauer, R. et al. Early cyclosporine withdrawal from a sirolimus-based regimen results in better renal allograft survival and renal function at 48 months after transplantation. Transpl. Int. 18, 22–28 (2005).

    Article  CAS  PubMed  Google Scholar 

  306. Larson, T. S. et al. Complete avoidance of calcineurin inhibitors in renal transplantation: a randomized trial comparing sirolimus and tacrolimus. Am. J. Transplant. 6, 514–522 (2006).

    Article  CAS  PubMed  Google Scholar 

  307. Buchler, M. et al. Sirolimus versus cyclosporine in kidney recipients receiving thymoglobulin, mycophenolate mofetil and a 6-month course of steroids. Am. J. Transplant. 7, 2522–2531 (2007).

    Article  CAS  PubMed  Google Scholar 

  308. Lebranchu, Y. et al. Five-year results of a randomized trial comparing de novo sirolimus and cyclosporine in renal transplantation: the SPIESSER study. Am. J. Transplant. 12, 1801–1810 (2012).

    Article  CAS  PubMed  Google Scholar 

  309. Gatault, P. et al. Eight-year results of the Spiesser study, a randomized trial comparing de novo sirolimus and cyclosporine in renal transplantation. Transpl. Int. 29, 41–50 (2016).

    Article  CAS  PubMed  Google Scholar 

  310. Ekberg, H. et al. Calcineurin inhibitor minimization in the Symphony study: observational results 3 years after transplantation. Am. J. Transplant. 9, 1876–1885 (2009).

    Article  CAS  PubMed  Google Scholar 

  311. Lebranchu, Y. et al. Efficacy on renal function of early conversion from cyclosporine to sirolimus 3 months after renal transplantation: concept study. Am. J. Transplant. 9, 1115–1123 (2009).

    Article  CAS  PubMed  Google Scholar 

  312. Lebranchu, Y. et al. Efficacy and safety of early cyclosporine conversion to sirolimus with continued MMF-four-year results of the Postconcept study. Am. J. Transplant. 11, 1665–1675 (2011).

    Article  CAS  PubMed  Google Scholar 

  313. Guba, M. et al. Renal function, efficacy, and safety of sirolimus and mycophenolate mofetil after short-term calcineurin inhibitor-based quadruple therapy in de novo renal transplant patients: one-year analysis of a randomized multicenter trial. Transplantation 90, 175–183 (2010).

    Article  CAS  PubMed  Google Scholar 

  314. Guba, M. et al. Early conversion to a sirolimus-based, calcineurin-inhibitor-free immunosuppression in the SMART trial: observational results at 24 and 36 months after transplantation. Transpl. Int. 25, 416–423 (2012).

    Article  CAS  PubMed  Google Scholar 

  315. Budde, K. et al. Everolimus-based, calcineurin-inhibitor-free regimen in recipients of de-novo kidney transplants: an open-label, randomised, controlled trial. Lancet 377, 837–847 (2011).

    Article  CAS  PubMed  Google Scholar 

  316. Budde, K. et al. Five-year outcomes in kidney transplant patients converted from cyclosporine to everolimus: the randomized ZEUS study. Am. J. Transplant 15, 119–128 (2015).

    Article  CAS  PubMed  Google Scholar 

  317. Holdaas, H. et al. Conversion of long-term kidney transplant recipients from calcineurin inhibitor therapy to everolimus: a randomized, multicenter, 24-month study. Transplantation 92, 410–418 (2011).

    Article  CAS  PubMed  Google Scholar 

  318. Weir, M. R. et al. Mycophenolate mofetil-based immunosuppression with sirolimus in renal transplantation: a randomized, controlled Spare-the-Nephron trial. Kidney Int. 79, 897–907 (2011).

    Article  CAS  PubMed  Google Scholar 

  319. Weir, M. R. et al. Long-term follow-up of kidney transplant recipients in the spare-the-nephron-trial. Transplantation http://dx.doi.org/10.1097/TP.0000000000001098 (2016).

  320. Mjornstedt, L. et al. Improved renal function after early conversion from a calcineurin inhibitor to everolimus: a randomized trial in kidney transplantation. Am. J. Transplant 12, 2744–2753 (2012).

    Article  CAS  PubMed  Google Scholar 

  321. Mjornstedt, L. et al. Renal function three years after early conversion from a calcineurin inhibitor to everolimus: results from a randomized trial in kidney transplantation. Transpl. Int. 28, 42–51 (2015).

    Article  CAS  PubMed  Google Scholar 

  322. Budde, K. et al. Renal, efficacy and safety outcomes following late conversion of kidney transplant patients from calcineurin inhibitor therapy to everolimus: the randomized APOLLO study. Clin. Nephrol. 83, 11–21 (2015).

    Article  CAS  PubMed  Google Scholar 

  323. Reitamo, S. et al. Efficacy of sirolimus (rapamycin) administered concomitantly with a subtherapeutic dose of cyclosporin in the treatment of severe psoriasis: a randomized controlled trial. Br. J. Dermatol. 145, 438–445 (2001).

    Article  CAS  PubMed  Google Scholar 

  324. Senior, P. A., Paty, B. W., Cockfield, S. M., Ryan, E. A. & Shapiro, A. M. Proteinuria developing after clinical islet transplantation resolves with sirolimus withdrawal and increased tacrolimus dosing. Am. J. Transplant. 5, 2318–2323 (2005).

    Article  PubMed  Google Scholar 

  325. Constantinescu, A. R., Liang, M. & Laskow, D. A. Sirolimus lowers myeloperoxidase and p-ANCA titers in a pediatric patient before kidney transplantation. Am. J. Kidney Dis. 40, 407–410 (2002).

    Article  PubMed  Google Scholar 

  326. Koening, C. L., Hernandez-Rodriguez, J., Molloy, E. S., Clark, T. M. & Hoffman, G. S. Limited utility of rapamycin in severe, refractory Wegener's granulomatosis. J. Rheumatol 36, 116–119 (2009).

    Article  CAS  PubMed  Google Scholar 

  327. Fervenza, F. C. et al. Acute rapamycin nephrotoxicity in native kidneys of patients with chronic glomerulopathies. Nephrol. Dial. Transplant. 19, 1288–1292 (2004).

    Article  CAS  PubMed  Google Scholar 

  328. Kim, H. J. & Edelstein, C. L. Mammalian target of rapamycin inhibition in polycystic kidney disease: From bench to bedside. Kidney Res. Clin. Pract. 31, 132–138 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  329. Lieberthal, W., Fuhro, R., Andry, C., Patel, V. & Levine, J. S. Rapamycin delays but does not prevent recovery from acute renal failure: role of acquired tubular resistance. Transplantation 82, 17–22 (2006).

    Article  CAS  PubMed  Google Scholar 

  330. Lee, L. et al. Efficacy of a rapamycin analog (CCI-779) and IFN-γ in tuberous sclerosis mouse models. Genes Chromosomes Cancer 42, 213–227 (2005).

    Article  CAS  PubMed  Google Scholar 

  331. Zhang, H. et al. A comparison of Ku0063794, a dual mTORC1 and mTORC2 inhibitor, and temsirolimus in preclinical renal cell carcinoma models. PLoS ONE 8, e54918 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Chiarini, F., Evangelisti, C., McCubrey, J. A. & Martelli, A. M. Current treatment strategies for inhibiting mTOR in cancer. Trends Pharmacol. Sci. 36, 124–135 (2015).

    Article  CAS  PubMed  Google Scholar 

  333. Hudes, G. et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N. Engl. J. Med. 356, 2271–2281 (2007).

    Article  CAS  PubMed  Google Scholar 

  334. Motzer, R. J. et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 372, 449–456 (2008).

    Article  CAS  PubMed  Google Scholar 

  335. Mita, M. M. et al. Phase I trial of the novel mammalian target of rapamycin inhibitor deforolimus (AP23573; MK-8669) administered intravenously daily for 5 days every 2 weeks to patients with advanced malignancies. J. Clin. Oncol. 26, 361–367 (2008).

    Article  CAS  PubMed  Google Scholar 

  336. Atkins, M. B. et al. Randomized phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J. Clin. Oncol. 22, 909–918 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

D.F.'s work is supported by an American Society of Nephrology Ben Lipps Research Fellowship. N.M.R.'s work is supported by an NHMRC C.J. Martin Fellowship, an American Society of Transplantation Basic Science Fellowship, an American Heart Association award (13 POST1452003), and by a Joseph A. Patrick Fellowship from the Starzl Transplantation Institute. A.W.T. is in receipt of research grants from the NIH (R56 AI126377; U01 AI91197 and U01 AI102456) and the US Department of Defense (W81XWH-15-2-0027). The authors' work is also supported by the German Research Foundation: CRC 1140 KidGEM (F.G., T.B.H.), Heisenberg program and CRC 992 (T.B.H.); by the European Research Council (T.B.H.); and by the Excellence Initiative of the German Federal and State Governments (EXC 294 to T.B.H.). We thank Ms. Miriam Freeman for excellent administrative support.

Author information

Authors and Affiliations

Authors

Contributions

D.F., N.M.R., and F.G. are co-first authors and T.B.H. and A.W.T are co-senior authors of this Review. D.F., N.M.R. and F.G. contributed equally to writing the article. T.B.H. and A.W.T. researched literature for the article, provided substantial discussion of the content and contributed equally to review and/or editing of the manuscript before and after submission.

Corresponding authors

Correspondence to Tobias B. Huber or Angus W. Thomson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fantus, D., Rogers, N., Grahammer, F. et al. Roles of mTOR complexes in the kidney: implications for renal disease and transplantation. Nat Rev Nephrol 12, 587–609 (2016). https://doi.org/10.1038/nrneph.2016.108

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2016.108

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing