Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hurdles to the introduction of new therapies for immune-mediated kidney diseases

Key Points

  • Disease classifications that define syndromes by their pathogenesis rather than their histopathological appearance or biomarker profile increase the likelihood of identifying effective treatments that will succeed in clinical trials

  • Patients need to be better stratified according to the likelihood that they will respond to certain drugs by combining the concepts of evidence-based and personalized medicine

  • Most immune-mediated kidney diseases are rare, implying that national registries and clinical trial networks will be needed to progress translational research and clinical trials

  • To improve the applicability of findings from preclinical animal studies to human disease not only are better disease models needed, but study designs must more closely reflect those of clinical trials

  • Testing of novel drugs in an add-on design should not be considered unless supported by respective preclinical studies; add-on designs are less suitable for drugs with similar modes-of-action

  • Biomarkers of intrarenal inflammation, nephron injury, and nephron number need to be identified and established as surrogate markers of disease activity and nephron loss

Abstract

Innovative immunotherapies continue to markedly benefit many disciplines in clinical medicine but disappointingly, these benefits have not translated to the treatment of kidney diseases despite encouraging findings from preclinical models of kidney dysfunction. This lack of progress in nephrology might relate to the unique biology of the kidney. More likely, this lack of progress relates to conceptual hurdles in the application of newer therapies to renal disease. In this Review we discuss seven hurdles that must be addressed in order to appropriately assess and introduce immunologic therapies for immune-mediated kidney disease: the use of appropriate criteria to define disease categories; issues relating to the heterogeneity of kidney diseases and how this heterogeneity affects approaches to treatment; issues related to the rarity of most kidney diseases; the paucity of good animal models of human kidney disease; issues relating to trial design; problems with current approaches to the identification and use of appropriate and feasible study end points; and a lack of adequate biomarkers of intrarenal inflammation and parenchymal injury. We suggest that overcoming these hurdles, in addition to searching for better therapeutic targets, will be necessary to progress the treatment of immune-mediated kidney disease into a new age of drug therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of a multicentre randomized controlled trial in rodents.
Figure 2: Considerations in the design of trials for immune-mediated kidney disease.

Similar content being viewed by others

References

  1. Machowska, A. et al. Therapeutics targeting persistent inflammation in chronic kidney disease. Transl. Res. 167, 204–213 (2015).

    Article  Google Scholar 

  2. Weening, J. J. & Jennette, J. C. Historical milestones in renal pathology. Virchows Arch. 461, 3–11 (2012).

    Article  Google Scholar 

  3. Trachtman, H. et al. A phase 1, single-dose study of fresolimumab, an anti-TGF-β antibody, in treatment-resistant primary focal segmental glomerulosclerosis. Kidney Int. 79, 1236–1243 (2011).

    Article  CAS  Google Scholar 

  4. Giglio, S. et al. Heterogeneous genetic alterations in sporadic nephrotic syndrome associate with resistance to immunosuppression. J. Am. Soc. Nephrol. 26, 230–236 (2015).

    Article  CAS  Google Scholar 

  5. Sadowski, C. E. et al. A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome. J. Am. Soc. Nephrol. 26, 1279–1289 (2015).

    Article  CAS  Google Scholar 

  6. Freedman, B. I. et al. End-stage renal disease in African Americans with lupus nephritis is associated with APOL1. Arthritis Rheumatol. 66, 390–396 (2014).

    Article  CAS  Google Scholar 

  7. Larsen, C. P. et al. Apolipoprotein L1 risk variants associate with systemic lupus erythematosus-associated collapsing glomerulopathy. J. Am. Soc. Nephrol. 24, 722–725 (2013).

    Article  CAS  Google Scholar 

  8. Kottgen, A. et al. Multiple loci associated with indices of renal function and chronic kidney disease. Nat. Genet. 41, 712–717 (2009).

    Article  CAS  Google Scholar 

  9. Soleymanian, T. et al. Non-diabetic renal disease with or without diabetic nephropathy in type 2 diabetes: clinical predictors and outcome. Ren. Fail. 37, 572–575 (2015).

    Article  CAS  Google Scholar 

  10. Hildebrandt, F. Genetic kidney diseases. Lancet 375, 1287–1295 (2010).

    Article  CAS  Google Scholar 

  11. Roche, P. A. & Furuta, K. The ins and outs of MHC class II-mediated antigen processing and presentation. Nat. Rev. Immunol. 15, 203–216 (2015).

    Article  CAS  Google Scholar 

  12. Kidney Disease: Improving Global Outcomes (KDIGO) Transplant Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 3, 1–150 (2013).

  13. Kidney Disease: Improving Global Outcomes (KDIGO) Transplant Work Group. KDIGO clinical practice guideline for the care of kidney transplant recipients. Am. J. Transplant. 9 (Suppl. 3), S1–S155 (2009).

  14. Weening, J. J. et al. The classification of glomerulonephritis in systemic lupus erythematosus revisited. J. Am. Soc. Nephrol. 15, 241–250 (2004).

    Article  Google Scholar 

  15. Boneparth, A. & Ilowite, N. T. Comparison of renal response parameters for juvenile membranous plus proliferative lupus nephritis versus isolated proliferative lupus nephritis: a cross-sectional analysis of the CARRA Registry. Lupus 23, 898–904 (2014).

    Article  CAS  Google Scholar 

  16. Radhakrishnan, J. et al. Mycophenolate mofetil and intravenous cyclophosphamide are similar as induction therapy for class V lupus nephritis. Kidney Int. 77, 152–160 (2010).

    Article  CAS  Google Scholar 

  17. Miyake, K., Akahoshi, M. & Nakashima, H. Th subset balance in lupus nephritis. J. Biomed. Biotechnol. 2011, 980286 (2011).

    Article  Google Scholar 

  18. Rezende, G. M. et al. Podocyte injury in pure membranous and proliferative lupus nephritis: distinct underlying mechanisms of proteinuria? Lupus 23, 255–262 (2014).

    Article  CAS  Google Scholar 

  19. Mysler, E. F. et al. Efficacy and safety of ocrelizumab in active proliferative lupus nephritis: results from a randomized, double-blind, phase III study. Arthritis Rheum. 65, 2368–2379 (2013).

    Article  CAS  Google Scholar 

  20. Cattran, D. C. et al. The Oxford classification of IgA nephropathy: rationale, clinicopathological correlations, and classification. Kidney Int. 76, 534–545 (2009).

    Article  Google Scholar 

  21. Grootscholten, C. et al. Interobserver agreement of scoring of histopathological characteristics and classification of lupus nephritis. Nephrol. Dial. Transplant. 23, 223–230 (2008).

    Article  Google Scholar 

  22. Rovin, B. H., Parikh, S. V. & Alvarado, A. in Systemic Lupus Erythematosus (eds Ginzler, E. M. & Dooley, M. A.) 537–552 (Elsevier, 2014).

    Google Scholar 

  23. Wilhelmus, S. et al. Interobserver agreement on histopathological lesions in class III or IV lupus nephritis. Clin. J. Am. Soc. Nephrol. 10, 47–53 (2014).

    Article  Google Scholar 

  24. Peterson, K. S. et al. Characterization of heterogeneity in the molecular pathogenesis of lupus nephritis from transcriptional profiles of laser-captured glomeruli. J. Clin. Invest. 113, 1722–1733 (2004).

    Article  CAS  Google Scholar 

  25. Parikh, S. et al. Characterizing the immune profile of the kidney biopsy at lupus nephritis flare differentiates early treatment responders from non-responders. Lupus Sci. Med. 2, e000112 (2015).

    Article  Google Scholar 

  26. Parikh, S. V., Ayoub, I. & Rovin, B. H. The kidney biopsy in lupus nephritis: time to move beyond histology. Nephrol. Dial. Transplant. 30, 3–6 (2015).

    Article  Google Scholar 

  27. Rovin, B. H. et al. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the lupus nephritis assessment with rituximab study. Arthritis Rheum. 64, 1215–1226 (2012).

    Article  CAS  Google Scholar 

  28. McGrogan, A., Franssen, C. F. & de Vries, C. S. The incidence of primary glomerulonephritis worldwide: a systematic review of the literature. Nephrol. Dial. Transplant. 26, 414–430 (2011).

    Article  Google Scholar 

  29. Stone, J. H. et al. Rituximab versus cyclophosphamide for ANCA-associated vasculitis. N. Engl. J. Med. 363, 221–232 (2010).

    Article  CAS  Google Scholar 

  30. Ruggenenti, P. et al. Anti-phospholipase A2 receptor antibody titer predicts post-rituximab outcome of membranous nephropathy. J. Am. Soc. Nephrol. 26, 2545–2558 (2015).

    Article  CAS  Google Scholar 

  31. López-Gómez, J. M. & Rivera, F. Renal biopsy findings in acute renal failure in the cohort of patients in the Spanish Registry of Glomerulonephritis. Clin. J. Am. Soc. Nephrol. 3, 674–681 (2008).

    Article  Google Scholar 

  32. Gadegbeku, C. A. et al. Design of the Nephrotic Syndrome Study Network (NEPTUNE) to evaluate primary glomerular nephropathy by a multidisciplinary approach. Kidney Int. 83, 749–756 (2013).

    Article  Google Scholar 

  33. Coppo, R. et al. VALIGA study of the ERA-EDTA Immunonephrology Working Group. Kidney Int. 86, 828–836 (2014).

    Article  CAS  Google Scholar 

  34. Jayne, D. & Rasmussen, N. Twenty-five years of European Union collaboration in ANCA-associated vasculitis research. Nephrol. Dial. Transplant. 30 (Suppl. 1), i1–i7 (2015).

    Article  CAS  Google Scholar 

  35. Morrish, A. T. et al. Establishing a clinical trials network in nephrology: experience of the Australasian Kidney Trials Network. Kidney Int. 85, 23–30 (2014).

    Article  Google Scholar 

  36. Walsh, M. et al. Plasma exchange and glucocorticoid dosing in the treatment of anti-neutrophil cytoplasm antibody associated vasculitis (PEXIVAS): protocol for a randomized controlled trial. Trials 14, 73 (2013).

    Article  CAS  Google Scholar 

  37. Howman, A. et al. Immunosuppression for progressive membranous nephropathy: a UK randomised controlled trial. Lancet 381, 744–751 (2013).

    Article  CAS  Google Scholar 

  38. Fervenza, F. C. et al. A multicenter randomized controlled trial of rituximab versus cyclosporine in the treatment of idiopathic membranous nephropathy (MENTOR). Nephron 130, 159–168 (2015).

    Article  CAS  Google Scholar 

  39. Dooley, M. A. et al. Mycophenolate versus azathioprine as maintenance therapy for lupus nephritis. N. Engl. J. Med. 365, 1886–1895 (2011).

    Article  CAS  Google Scholar 

  40. de Zeeuw, D. et al. The effect of CCR2 inhibitor CCX140-B on residual albuminuria in patients with type 2 diabetes and nephropathy: a randomised trial. Lancet Diabetes Endocrinol. 3, 687–696 (2015).

    Article  CAS  Google Scholar 

  41. US National Library of Medicine. ClinicalTrials.gov [online], (2015).

  42. US National Library of Medicine. ClinicalTrials.gov [online], (2014).

  43. US National Library of Medicine. ClinicalTrials.gov [online], (2015).

  44. Boumpas, D. T. et al. A short course of BG9588 (anti-CD40 ligand antibody) improves serologic activity and decreases hematuria in patients with proliferative lupus glomerulonephritis. Arthritis Rheum. 48, 719–727 (2003).

    Article  CAS  Google Scholar 

  45. Appel, G. B. et al. Mycophenolate mofetil versus cyclophosphamide for induction treatment of lupus nephritis. J. Am. Soc. Nephrol. 20, 1103–1112 (2009).

    Article  CAS  Google Scholar 

  46. Holderied, A. & Anders, H. J. Animal models of kidney inflammation in translational medicine. Drug Discov. Today Dis. Models 11, 19–27 (2014).

    Article  Google Scholar 

  47. Hirst, J. A. et al. The need for randomization in animal trials: an overview of systematic reviews. PLoS ONE 9, e98856 (2014).

    Article  Google Scholar 

  48. Llovera, G. et al. Results of a preclinical randomized controlled multicenter trial (pRCT): anti-CD49d treatment for acute brain ischemia. Sci. Transl. Med. 7, 299ra121 (2015).

    Article  Google Scholar 

  49. Group, A. T. Treatment of lupus nephritis with abatacept: the abatacept and cyclophosphamide combination efficacy and safety study. Arthritis Rheumatol. 66, 3096–3104 (2014).

    Article  Google Scholar 

  50. Condon, M. B. et al. Prospective observational single-centre cohort study to evaluate the effectiveness of treating lupus nephritis with rituximab and mycophenolate mofetil but no oral steroids. Ann. Rheum. Dis. 72, 1280–1286 (2013).

    Article  CAS  Google Scholar 

  51. D'Acquisto, F. M., May, J. & Ghosh, S. Inhibition of nuclear factor kappa B (NF-B): an emerging theme in anti-inflammatory therapies. Mol. Interv. 2, 22–35 (2002).

    Article  CAS  Google Scholar 

  52. Lourenco, E. V. et al. Laquinimod delays and suppresses nephritis in lupus-prone mice and affects both myeloid and lymphoid immune cells. Arthritis Rheumatol. 66, 674–685 (2014).

    Article  CAS  Google Scholar 

  53. Jayne, D. et al. The pharmacokinetics of laquinimod and mycophenolate mofetil during treatment of active lupus nephritis. Presented at the American Society of Nephrology Annual Meeting, Atlanta (2013).

  54. Enia, G. et al. Complement activated leucopenia during hemodialysis: effect of pulse methyl-prednisolone. Int. J. Artif. Organs 13, 98–102 (1990).

    Article  CAS  Google Scholar 

  55. Jansen, N. J. et al. The role of different types of corticosteroids on the inflammatory mediators in cardiopulmonary bypass. Eur. J. Cardiothorac. Surg. 5, 211–217 (1991).

    Article  CAS  Google Scholar 

  56. Malvar, A. et al. Histologic versus clinical remission in proliferative lupus nephritis. Nephrol. Dial. Transplant. http://dx.doi.org/10.1093/ndt/gfv296 (2015).

  57. Dall'era, M. et al. Identification of biomarkers that predict response to treatment of lupus nephritis with mycophenolate mofetil or pulse cyclophosphamide. Arthritis Care Res. (Hoboken) 63, 351–357 (2011).

    CAS  Google Scholar 

  58. Dall'Era, M. et al. Predictors of long-term renal outcome in Lupus Nephritis Trials: lessons learned from the Euro-Lupus Nephritis Cohort. Arthritis Rheumatol. 67, 1305–1313 (2015).

    Article  CAS  Google Scholar 

  59. Tamirou, F. et al. Long-term follow-up of the MAINTAIN Nephritis Trial, comparing azathioprine and mycophenolate mofetil as maintenance therapy of lupus nephritis. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2014-206897 (2015).

  60. Beck, L. H. Jr et al. Rituximab-induced depletion of anti-PLA2R autoantibodies predicts response in membranous nephropathy. J. Am. Soc. Nephrol. 22, 1543–1550 (2011).

    Article  CAS  Google Scholar 

  61. Reich, H. N. et al. Remission of proteinuria improves prognosis in IgA nephropathy. J. Am. Soc. Nephrol. 18, 3177–3183 (2007).

    Article  CAS  Google Scholar 

  62. Sharma, A., Mucino, M. J. & Ronco, C. Renal functional reserve and renal recovery after acute kidney injury. Nephron Clin. Pract. 127, 94–100 (2014).

    Article  CAS  Google Scholar 

  63. Li, Y. et al. Urinary biomarkers in lupus nephritis. Autoimmun. Rev. 5, 383–388 (2006).

    Article  CAS  Google Scholar 

  64. Suthanthiran, M. et al. Urinary-cell mRNA profile and acute cellular rejection in kidney allografts. N. Engl. J. Med. 369, 20–31 (2013).

    Article  CAS  Google Scholar 

  65. Enghard, P. et al. Urinary CD4 T cells identify SLE patients with proliferative lupus nephritis and can be used to monitor treatment response. Ann. Rheum. Dis. 73, 277–283 (2014).

    Article  CAS  Google Scholar 

  66. Kopetschke, K. et al. The cellular signature of urinary immune cells in lupus nephritis: new insights into potential biomarkers. Arthritis Res. Ther. 17, 94 (2015).

    Article  Google Scholar 

  67. Murray, P. T. et al. Potential use of biomarkers in acute kidney injury: report and summary of recommendations from the 10th Acute Dialysis Quality Initiative consensus conference. Kidney Int. 85, 513–521 (2014).

    Article  Google Scholar 

  68. Kashani, K. et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit. Care 17, R25 (2013).

    Article  Google Scholar 

  69. Luyckx, V. A. & Brenner, B. M. The clinical importance of nephron mass. J. Am. Soc. Nephrol. 21, 898–910 (2010).

    Article  Google Scholar 

  70. Luyckx, V. A. & Brenner, B. M. Birth weight, malnutrition and kidney-associated outcomes — a global concern. Nat. Rev. Nephrol. 11, 135–149 (2015).

    Article  Google Scholar 

  71. Beeman, S. C. et al. MRI-based glomerular morphology and pathology in whole human kidneys. Am. J. Physiol. Renal Physiol. 306, F1381–F1390 (2014).

    Article  CAS  Google Scholar 

  72. Risch, L. et al. The serum uromodulin level is associated with kidney function. Clin. Chem. Lab. Med. 52, 1755–1761 (2014).

    CAS  PubMed  Google Scholar 

  73. Torffvit, O., Kamper, A. L. & Strandgaard, S. Tamm–Horsfall protein in urine after uninephrectomy/transplantation in kidney donors and their recipients. Scand. J. Urol. Nephrol. 31, 555–559 (1997).

    Article  CAS  Google Scholar 

  74. Furie, R. et al. Efficacy and safety of abatacept in lupus nephritis: a twelve-month, randomized, double-blind study. Arthritis Rheumatol. 66, 379–389 (2014).

    Article  CAS  Google Scholar 

  75. Jones, R. B. et al. Rituximab versus cyclophosphamide in ANCA-associated renal vasculitis. N. Engl. J. Med. 363, 211–220 (2010).

    Article  CAS  Google Scholar 

  76. Fellstrom, B. C. et al. The NEFIGAN Trial: NEFECON, a novel targeted release formulation of budesonide, reduces proteinuria and stabilizes eGFR in IgA nephropathy patients at risk of ESRD. (abstract), J. Am. Soc. Nephrol. 26, HI-OR04.72 (2015).

    Google Scholar 

Download references

Acknowledgements

H.-J.A. would like to thank the Deutsche Forschungsgemeinschaft for research support via GRK1202. D.R.W.J. is supported by the Cambridge Biomedical Research Centre. B.H.R. is supported in part by NIDDK U01 DK096927.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to researching data for the article, discussing the article's content, writing the article and review/editing of the manuscript before submission.

Corresponding authors

Correspondence to Hans-Joachim Anders, David R. W. Jayne or Brad H. Rovin.

Ethics declarations

Competing interests

H.-J.A. has received consultancy fees from GlaxoSmithKine, Roche and Bayer. D.R.W.J. has received research grants from Roche/Genentech and Sanofi/Genzyme, consultancy fees from Boehringer-Ingelheim, BIOGEN, Chemocentryx, GlaxoSmithKine and Roche/Genentech, and is a director of Aurinia Pharmaceuticals Inc. B.H.R. has received consultancy fees from Genentech, Biogen, Roche, Boehringer-Ingelheim, Lilly, and Mallinckrodt, and a research grant from Mallinckrodt.

PowerPoint slides

Related links

Related links

FURTHER INFORMATION

NEPTUNE

EURenOMICs consortium

EUVAS

Lupus Nephritis Trial Network

NIH Rare Disease Network

European Union Health Technology Schemes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anders, HJ., Jayne, D. & Rovin, B. Hurdles to the introduction of new therapies for immune-mediated kidney diseases. Nat Rev Nephrol 12, 205–216 (2016). https://doi.org/10.1038/nrneph.2015.206

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2015.206

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing