Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Drug development: how academia, industry and authorities interact

Abstract

Unfortunately, abundant examples could be given of pitfalls in the current drug development paradigm—including in the design, conduct and evaluation of phase III clinical trials. This article discusses issues of particular relevance to clinical trials in nephrology, including the inappropriate use of placebo, publication of reports that emphasize potential treatment benefits over adverse reactions, the sometimes dubious impartiality of independent guidelines, and inadequate recruitment of elderly patients. This Perspectives article aims to highlight and summarize the flaws in the current drug development process, while suggesting a way forward that equally satisfies the requirements of academia, patients and the pharmaceutical industry. We suggest improvements to the drug development process and related legislation that intend to balance public needs with commercial aims and ensure effective drug evaluation by regulatory authorities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Goldacre, B. Bad Pharma: How Drug Companies Mislead Doctors and Harm Patients (Fourth Estate, 2012).

    Google Scholar 

  2. Altman, D. G. & Moher, D. Declaration of transparency for each research article. BMJ 347, f4796 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chalmers, I. et al. How to increase value and reduce waste when research priorities are set. Lancet 383, 156–165 (2014).

    Article  PubMed  Google Scholar 

  4. Chalmers, I. & Glasziou, P. Avoidable waste in the production and reporting of research evidence. Lancet 374, 86–89 (2009).

    Article  PubMed  Google Scholar 

  5. Garattini, S. & Bertele, V. Ethics in clinical research. J. Hepatol. 51, 792–797 (2009).

    Article  PubMed  Google Scholar 

  6. Jones, C. W. et al. Non-publication of large randomized clinical trials: cross sectional analysis. BMJ 347, f6104 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kleinert, S. & Horton, R. How should medical science change? Lancet 383, 197–198 (2014).

    Article  PubMed  Google Scholar 

  8. Garattini, S., Bertele, V. & Bertolini, G. A. failed attempt at collaboration. BMJ 347, f5354 (2013).

    Article  PubMed  Google Scholar 

  9. Lundh, A., Krogsboll, L. T. & Gotzsche, P. C. Sponsors' participation in conduct and reporting of industry trials: a descriptive study. Trials 13, 146 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chabner, B. A. Ghost writers in the sky. Oncologist 14, 199–200 (2009).

    Article  PubMed  Google Scholar 

  11. Wislar, J. S., Flanagin, A., Fontanarosa, P. B. & Deangelis, C. D. Honorary and ghost authorship in high impact biomedical journals: a cross sectional survey. BMJ 343, d6128 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Vitry, A. et al. Provision of information on regulatory authorities' websites. Intern. Med. J. 38, 559–567 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Bertele, V., Banzi, R., Gluud, C. & Garattini, S. EMA's reflection on placebo does not reflect patients' interests. Eur. J. Clin. Pharmacol. 68, 877–879 (2012).

    Article  PubMed  Google Scholar 

  14. Gotzsche, P. C. Lessons from and cautions about noninferiority and equivalence randomized trials. JAMA 295, 1172–1174 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. World Medical Association. Declaration of Helsinki - ethical principles for medical research involving human subjects. wma.net[online] (2008).

  16. Garattini, S. Reconsidering the Declaration of Helsinki. Lancet 382, 1247 (2013).

    Article  PubMed  Google Scholar 

  17. Haller, H. et al. Olmesartan for the delay or prevention of microalbuminuria in type 2 diabetes. N. Engl. J. Med. 364, 907–917 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Ruggenenti, P. et al. Preventing microalbuminuria in type 2 diabetes. N. Engl. J. Med. 351, 1941–1951 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Mogensen, C. E. Urinary albumin excretion in early and long-term juvenile diabetes. Scand. J. Clin. Lab. Invest. 28, 183–193 (1971).

    Article  CAS  PubMed  Google Scholar 

  20. Adler, A. I. et al. Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int. 63, 225–232 (2003).

    Article  PubMed  Google Scholar 

  21. Ravid, M. et al. Use of enalapril to attenuate decline in renal function in normotensive, normoalbuminuric patients with type 2 diabetes mellitus. A randomized, controlled trial. Ann. Intern. Med. 128, 982–988 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Reisman, S. A. et al. Bardoxolone methyl decreases megalin and activates nrf2 in the kidney. J. Am. Soc. Nephrol. 23, 1663–1673 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pergola, P. E. et al. Bardoxolone methyl and kidney function in CKD with type 2 diabetes. N. Engl. J. Med. 365, 327–336 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Tayek, J. A. & Kalantar-Zadeh, K. The extinguished BEACON of bardoxolone: not a Monday morning quarterback story. Am. J. Nephrol. 37, 208–211 (2013).

    Article  PubMed  Google Scholar 

  25. Pergola, P. E. et al. in 49th European Renal Association–European Dialysis and Transplant Association Congress, [Abstract FO026] Nephrol. Dial. Transplant. 27, S11–S13 (2012).

    Google Scholar 

  26. de Zeeuw, D. et al. Rationale and trial design of Bardoxolone Methyl Evaluation in Patients with Chronic Kidney Disease and Type 2 Diabetes: the Occurrence of Renal Events (BEACON). Am. J. Nephrol. 37, 212–222 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. de Zeeuw, D. et al. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N. Engl. J. Med. 369, 2492–2503 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zoja, C. et al. Analogs of bardoxolone methyl worsen diabetic nephropathy in rats with additional adverse effects. Am. J. Physiol. Renal Physiol. 304, F808–F819 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Deshayes, F. & Nahmias, C. Angiotensin receptors: a new role in cancer? Trends Endocrinol. Metab. 16, 293–299 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Grossman, E., Messerli, F. H. & Goldbourt, U. Antihypertensive therapy and the risk of malignancies. Eur. Heart J. 22, 1343–1352 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Sipahi, I., Debanne, S. M., Rowland, D. Y., Simon, D. I. & Fang, J. C. Angiotensin-receptor blockade and risk of cancer: meta-analysis of randomised controlled trials. Lancet Oncol. 11, 627–636 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Willis, L. M., El-Remessy, A. B., Somanath, P. R., Deremer, D. L. & Fagan, S. C. Angiotensin receptor blockers and angiogenesis: clinical and experimental evidence. Clin. Sci. (Lond.). 120, 307–319 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Wuerzner, G., Burnier, M. & Waeber, B. Critical review of cancer risk associated with angiotensin receptor blocker therapy. Vasc. Health Risk Manag. 7, 741–747 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. ARB Trialists Collaboration. Effects of telmisartan, irbesartan, valsartan, candesartan, and losartan on cancers in 15 trials enrolling 138,769 individuals. J. Hypertens. 29, 623–635 (2011).

  35. Coleman, C. I., Baker, W. L., Kluger, J. & White, C. M. Antihypertensive medication and their impact on cancer incidence: a mixed treatment comparison meta-analysis of randomized controlled trials. J. Hypertens. 26, 622–629 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Huang, C. C. et al. Angiotensin II receptor blockers and risk of cancer in patients with systemic hypertension. Am. J. Cardiol. 107, 1028–1033 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Pasternak, B., Svanstrom, H., Callreus, T., Melbye, M. & Hviid, A. Use of angiotensin receptor blockers and the risk of cancer. Circulation 123, 1729–1736 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Bangalore, S. et al. Antihypertensive drugs and risk of cancer: network meta-analyses and trial sequential analyses of 324,168 participants from randomised trials. Lancet Oncol. 12, 65–82 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Fried, L. F. et al. Combined Angiotensin inhibition for the treatment of diabetic nephropathy. N. Engl. J. Med. 369, 1892–1903 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Cannon, C. P. et al. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N. Engl. J. Med. 350, 1495–1504 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Shepherd, J. et al. Effect of intensive lipid lowering with atorvastatin on renal function in patients with coronary heart disease: the Treating to New Targets. (TNT) study. Clin. J. Am. Soc. Nephrol. 2, 1131–1139 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Keaney, J. F. Jr, Curfman, G. D. & Jarcho, J. A. A pragmatic view of the new cholesterol treatment guidelines. N. Engl. J. Med. 370, 275–278 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Abramson, J. D., Rosenberg, H. G., Jewell, N. & Wright, J. M. Should people at low risk of cardiovascular disease take a statin? BMJ 347, f6123 (2013).

    Article  PubMed  Google Scholar 

  44. Sniderman, A. et al. Is lower and lower better and better? A re-evaluation of the evidence from the Cholesterol Treatment Trialists' Collaboration meta-analysis for low-density lipoprotein lowering. J. Clin. Lipidol. 6, 303–309 (2012).

    Article  PubMed  Google Scholar 

  45. Maron, D. J., Fazio, S. & Linton, M. F. Current perspectives on statins. Circulation 101, 207–213 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Sharp Collaborative Group. Study of Heart and Renal Protection (SHARP): randomized trial to assess the effects of lowering low-density lipoprotein cholesterol among 9,438 patients with chronic kidney disease. Am. Heart J. 160, 785–794 (2010).

  47. Baigent, C. et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. Lancet 377, 2181–2192 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu, B., Che, W., Yan, H., Zhu, W. & Wang, H. Effects of rosuvastatin vs. simvastatin/ezetimibe on arterial wall stiffness in patients with coronary artery disease. Intern. Med. 52, 2715–2719 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Zorzela, L. et al. Quality of reporting in systematic reviews of adverse events: systematic review. BMJ 348, f7668 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Nobili, A. et al. Potentially severe drug interactions in elderly outpatients: results of an observational study of an administrative prescription database. J. Clin. Pharm. Ther. 34, 377–386 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Dormuth, C. R. et al. Use of high potency statins and rates of admission for acute kidney injury: multicenter, retrospective observational analysis of administrative databases. BMJ 346, f880 (2013).

    Article  PubMed  Google Scholar 

  52. Wolfe, S. M. Dangers of rosuvastatin identified before and after FDA approval. Lancet 363, 2189–2190 (2004).

    Article  PubMed  Google Scholar 

  53. Roberts, M. D. CRESTOR (rosuvastatin calcium) NDA 21–366 JUPITER. fda.gov[online] (2009).

  54. Hippisley-Cox, J. & Coupland, C. Unintended effects of statins in men and women in England and Wales: population based cohort study using the QResearch database. BMJ 340, c2197 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sattar, N. et al. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet 375, 735–742 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Preiss, D. et al. Risk of incident diabetes with intensive-dose compared with moderate-dose statin therapy: a meta-analysis. JAMA 305, 2556–2564 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Waters, D. D. et al. Cardiovascular event reduction versus new-onset diabetes during atorvastatin therapy: effect of baseline risk factors for diabetes. J. Am. Coll. Cardiol. 61, 148–152 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Waters, D. D. et al. Predictors of new-onset diabetes in patients treated with atorvastatin: results from 3 large randomized clinical trials. J. Am. Coll. Cardiol. 57, 1535–1545 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Tomaszewski, M., Stepien, K. M., Tomaszewska, J. & Czuczwar, S. J. Statin-induced myopathies. Pharmacol. Rep. 63, 859–866 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Semb, A. G. et al. Effect of intensive lipid-lowering therapy on cardiovascular outcome in patients with and those without inflammatory joint disease. Arthritis Rheum. 64, 2836–2846 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Jacobson, T. A. Toward “pain-free” statin prescribing: clinical algorithm for diagnosis and management of myalgia. Mayo. Clin. Proc. 83, 687–700 (2008).

    Article  PubMed  Google Scholar 

  62. Ridker, P. M. et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N. Engl. J. Med. 359, 2195–2207 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Block, G. A., Raggi, P., Bellasi, A., Kooienga, L. & Spiegel, D. M. Mortality effect of coronary calcification and phosphate binder choice in incident hemodialysis patients. Kidney Int. 71, 438–441 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. St. Peter, W. L., Liu, J., Weinhandl, E. & Fan, Q. A. comparison of sevelamer and calcium-based phosphate binders on mortality, hospitalization, and morbidity in hemodialysis: a secondary analysis of the Dialysis Clinical Outcomes Revisited (DCOR) randomized trial using claims data. Am. J. Kidney Dis. 51, 445–454 (2008).

    Article  PubMed  Google Scholar 

  65. Suki, W. N. et al. Effects of sevelamer and calcium-based phosphate binders on mortality in hemodialysis patients. Kidney Int. 72, 1130–1137 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Qunibi, W. Y. et al. Treatment of hyperphosphatemia in hemodialysis patients: The Calcium Acetate Renagel Evaluation (CARE Study). Kidney Int. 65, 1914–1926 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Qunibi, W. et al. A 1-year randomized trial of calcium acetate versus sevelamer on progression of coronary artery calcification in hemodialysis patients with comparable lipid control: the Calcium Acetate Renagel Evaluation-2 (CARE-2) study. Am. J. Kidney Dis. 51, 952–965 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Kovesdy, C. P., Mehrotra, R. & Kalantar-Zadeh, K. Battleground: chronic kidney disorders mineral and bone disease—calcium obsession, vitamin d, and binder confusion. Clin. J. Am. Soc. Nephrol. 3, 168–173 (2008).

    Article  PubMed  Google Scholar 

  69. European Mycophenolate Mofetil Cooperative Study Group. Placebo-controlled study of mycophenolate mofetil combined with cyclosporin and corticosteroids for prevention of acute rejection. Lancet 345, 1321–1325 (1995).

  70. Sollinger, H. W. Mycophenolate mofetil for the prevention of acute rejection in primary cadaveric renal allograft recipients. U. S. Renal Transplant Mycophenolate Mofetil Study Group. Transplantation 60, 225–232 (1995).

    Article  CAS  PubMed  Google Scholar 

  71. The Tricontinental Mycophenolate Mofetil Renal Transplantation Study Group. A blinded, randomized clinical trial of mycophenolate mofetil for the prevention of acute rejection in cadaveric renal transplantation. Transplantation 61, 1029–1037 (1996).

  72. Halloran, P. et al. Mycophenolate mofetil in renal allograft recipients: a pooled efficacy analysis of three randomized, double-blind, clinical studies in prevention of rejection. The International Mycophenolate Mofetil Renal Transplant Study Groups. Transplantation 63, 39–47 (1997).

    Article  CAS  PubMed  Google Scholar 

  73. Mele, T. S. & Halloran, P. F. The use of mycophenolate mofetil in transplant recipients. Immunopharmacology 47, 215–245 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Remuzzi, G. et al. Mycophenolate mofetil versus azathioprine for prevention of chronic allograft dysfunction in renal transplantation: the MYSS follow-up randomized, controlled clinical trial. J. Am. Soc. Nephrol. 18, 1973–1985 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Remuzzi, G. et al. Mycophenolate mofetil versus azathioprine for prevention of acute rejection in renal transplantation (MYSS): a randomised trial. Lancet 364, 503–512 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Shah, S. et al. Long-term graft outcome with mycophenolate mofetil and azathioprine: a paired kidney analysis. Transplantation 82, 1634–1639 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. McNeil, K. et al. Comparison of mycophenolate mofetil and azathioprine for prevention of bronchiolitis obliterans syndrome in de novo lung transplant recipients. Transplantation 81, 998–1003 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Germani, G. et al. Azathioprine in liver transplantation: a reevaluation of its use and a comparison with mycophenolate mofetil. Am. J. Transplant. 9, 1725–1731 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Knight, S. R., Russell, N. K., Barcena, L. & Morris, P. J. Mycophenolate mofetil decreases acute rejection and may improve graft survival in renal transplant recipients when compared with azathioprine: a systematic review. Transplantation 87, 785–794 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Schold, J. D. & Kaplan, B. AZA/tacrolimus is associated with similar outcomes as MMF/tacrolimus among renal transplant recipients. Am. J. Transplant. 9, 2067–2074 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Inker, L. A. et al. KDOQI US Commentary on the KDIGO Clinical Practice Guideline for the Evaluation and Management of CKD. Am. J. Kidney Dis. 63, 713–735 (2014).

    Article  PubMed  Google Scholar 

  82. Coyne, D. W. Influence of industry on renal guideline development. Clin. J. Am. Soc. Nephrol. 2, 3–7; 13–14 (2007).

    Article  PubMed  Google Scholar 

  83. KDOQI. National Kidney Foundation. KDOQI clinical practice guidelines and clinical practice recommendations for anemia in chronic kidney disease. Am. J. Kidney Dis. 47, S11–S145 (2006).

  84. Coyne, D. W. Practice recommendations based on low, very low, and missing evidence. Clin. J. Am. Soc. Nephrol. 2, 11–12 (2007).

    Article  PubMed  Google Scholar 

  85. Drueke, T. B. et al. Normalization of hemoglobin level in patients with chronic kidney disease and anemia. N. Engl. J. Med. 355, 2071–2084 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Singh, A. K. et al. Correction of anemia with epoetin alfa in chronic kidney disease. N. Engl. J. Med. 355, 2085–2098 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Kassirer, J. P. Stacking the deck. Clin. J. Am. Soc. Nephrol. 2, 212 (2007).

    Article  PubMed  Google Scholar 

  88. Singh, A. K. Anaemia: does the KDIGO guideline move the needle in CKD anaemia? Nature Rev. Nephrol. 8, 616–618 (2012).

    Article  CAS  Google Scholar 

  89. Coyne, D. W. Managing anemia in for-profit dialysis chains: when ethics and business conflict. Semin. Dial. 22, 18–21 (2009).

    Article  PubMed  Google Scholar 

  90. Coyne, D. W. The health-related quality of life was not improved by targeting higher hemoglobin in the Normal Hematocrit Trial. Kidney Int. 82, 235–241 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Besarab, A. et al. The effects of normal as compared with low hematocrit values in patients with cardiac disease who are receiving hemodialysis and epoetin. N. Engl. J. Med. 339, 584–590 (1998).

    Article  CAS  PubMed  Google Scholar 

  92. Evenepoel, P. Calcimimetics in chronic kidney disease: evidence, opportunities and challenges. Kidney Int. 74, 265–275 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Quarles, L. D. et al. The calcimimetic AMG 073 as a potential treatment for secondary hyperparathyroidism of end-stage renal disease. J. Am. Soc. Nephrol. 14, 575–583 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Gellene, D. Strengthening bones, raising questions; Amgen's ties to kidney research are suspect to some experts. Los Angeles Times [online], (5 April 2004).

    Google Scholar 

  95. The National Kidney Foundation. K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am. J. Kidney Dis. 42, S1–S201 (2003).

  96. Goldsmith, D. R., Scott, L. J., Cvetkovic, R. S. & Plosker, G. L. Sevelamer hydrochloride: a review of its use for hyperphosphataemia in patients with end-stage renal disease on haemodialysis. Drugs 68, 85–104 (2008).

    Article  PubMed  Google Scholar 

  97. Hopewell, S., Loudon, K., Clarke, M. J., Oxman, A. D. & Dickersin, K. Publication bias in clinical trials due to statistical significance or direction of trial results. Cochrane Database Syst. Rev., issue 1. Art. No.: MR000006. http://dx.doi.org/10.1002/14651858.MR000006.pub3 (2009).

  98. Chan, A. W., Hrobjartsson, A., Haahr, M. T., Gotzsche, P. C. & Altman, D. G. Empirical evidence for selective reporting of outcomes in randomized trials: comparison of protocols to published articles. JAMA 291, 2457–2465 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Easterbrook, P. J., Berlin, J. A., Gopalan, R. & Matthews, D. R. Publication bias in clinical research. Lancet 337, 867–872 (1991).

    Article  CAS  PubMed  Google Scholar 

  100. Hahn, S., Williamson, P. R. & Hutton, J. L. Investigation of within-study selective reporting in clinical research: follow-up of applications submitted to a local research ethics committee. J. Eval. Clin. Pract. 8, 353–359 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Pandolfini, C. & Bonati, M. Children's presence in research. A review of online registers. Eur. J. Clin. Pharmacol. 65, 873–880 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. Pinnow, E., Sharma, P., Parekh, A., Gevorkian, N. & Uhl, K. Increasing participation of women in early phase clinical trials approved by the FDA. Womens Health Issues 19, 89–93 (2009).

    Article  PubMed  Google Scholar 

  103. Cherubini, A. et al. The persistent exclusion of older patients from ongoing clinical trials regarding heart failure. Arch. Intern. Med. 171, 550–556 (2011).

    Article  PubMed  Google Scholar 

  104. Becker, M. L., Visser, L. E., van Gelder, T., Hofman, A. & Stricker, B. H. Increasing exposure to drug-drug interactions between 1992 and 2005 in people aged > or = 55 years. Drugs Aging 25, 145–152 (2008).

    Article  PubMed  Google Scholar 

  105. Crome, P. et al. Exclusion of older people from clinical trials: professional views from nine European countries participating in the PREDICT study. Drugs Aging 28, 667–677 (2011).

    Article  PubMed  Google Scholar 

  106. McMurdo, M. Clinical research must include more older people. BMJ 346, f3899 (2013).

    Article  PubMed  Google Scholar 

  107. Califf, R. M. et al. Prevention of diabetes and cardiovascular disease in patients with impaired glucose tolerance: rationale and design of the Nateglinide And Valsartan in Impaired Glucose Tolerance Outcomes Research (NAVIGATOR) Trial. Am. Heart J. 156, 623–632 (2008).

    Article  PubMed  Google Scholar 

  108. Nobili, A., Garattini, S. & Mannucci, P. M. Multiple diseases and polypharmacy in the elderly: challenges for the internist of the third millennium, J. Comorbidity 1, 28–44 (2011).

    Article  Google Scholar 

  109. Nyborg, G., Straand, J. & Brekke, M. Inappropriate prescribing for the elderly—a modern epidemic? Eur. J. Clin. Pharmacol. 68, 1085–1094 (2012).

    Article  PubMed  Google Scholar 

  110. Eichler, H. G., Abadie, E., Breckenridge, A., Leufkens, H. & Rasi, G. Open clinical trial data for all? A view from regulators. PLoS Med. 9, e1001202 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Rodwin, M. A. & Abramson, J. D. Clinical trial data as a public good. JAMA 308, 871–872 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. Commission of the European Communities. European Parliament Regulation (EC) No 726/2004: laying down Community procedures for the authorisation and supervision of medicinal products for human and veterinary use and establishing a European Medicines Agency. http://ec.europa.eu/health/files/eudralex/vol-1/reg_2004_726/reg_2004_726_cons_en.pdf (2004).

  113. Rodwin, M. A. Independent drug testing to ensure drug safety and efficacy. Edmond J. Saffra working papers, no. 23 http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2328348 (2013).

  114. Garattini, S. & Chalmers, I. Patients and the public deserve big changes in evaluation of drugs. BMJ 338, b1025 (2009).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Vanna Pistotti for assistance with the bibliography.

Author information

Authors and Affiliations

Authors

Contributions

Both authors (S.G. and N.P.) contributed to researching data for the article, discussions of its content, writing the article, review and editing of the manuscript before submission.

Corresponding author

Correspondence to Silvio Garattini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garattini, S., Perico, N. Drug development: how academia, industry and authorities interact. Nat Rev Nephrol 10, 602–610 (2014). https://doi.org/10.1038/nrneph.2014.133

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2014.133

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research