Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Glomerular diseases: genetic causes and future therapeutics

Abstract

The glomerulus consists of capillary tufts, a mesangial cell component and the Bowman capsule. The glomerular filtration barrier is composed of glomerular endothelial cells, a basement membrane, and podocytes. Particular components of the slit diaphragm and the glomerular basement membrane strictly orchestrate the integrity of the glomerular filtration barrier. The basement membrane is made of a highly crosslinked macromolecular meshwork of type IV collagen, proteoglycans, and laminin. Genetic forms of glomerular disease are predominantly caused by genetic defects in these molecular structures or in factors that regulate the glomerular filtration barrier. In addition, abnormal IgA1 glycosylation can increase susceptibility to IgA nephropathy. Dysregulation of the complement system or of platelet activation can lead to the development of endocapillary lesions, which manifest as thrombotic microangiopathy. Glomerular dysfunction is also encountered in several genetic metabolic and mitochondrial disorders. Discoveries of mutations in a range of genes have provided new insights into the mechanisms of glomerular disease. In this Review, we summarize recent progress in the genetics and therapeutics of a number of glomerular diseases.

Key Points

  • Genetic defects in glomerular endocapillaries, the glomerular basement membrane, and podocytes all contribute to the pathogenesis of congenital glomerulopathies

  • Systemic genetic diseases, for example those caused by defects in metabolism, mitochondrial energy depletion, and immune diseases, can also result in glomerulopathy

  • Novel genome-wide association and systems biology studies have improved our understanding of monogenic glomerulopathies in complex kidney diseases

  • Transgenic mice and gene therapy will expand our understanding of the molecular structure of the glomerular filtration barrier, and will probably reveal novel therapeutic strategies for the treatment of genetic glomerular diseases

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The glomerular filtration system and major GBM components.
Figure 2: IgA nephropathy.
Figure 3: Dysregulation of the alternative complement pathway leading to thrombotic microangiopathy.

Similar content being viewed by others

References

  1. Yamada, E. The fine structure of the renal glomerulus of the mouse. J. Histochem. Cytochem. 3, 309 (1955).

    Article  CAS  PubMed  Google Scholar 

  2. Ohse, T. et al. A new function for parietal epithelial cells: a second glomerular barrier. Am. J. Physiol. Renal Physiol. 297, F1566–F1574 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ohse, T. et al. The enigmatic parietal epithelial cell is finally getting noticed: a review. Kidney Int. 76, 1225–1238 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Schlondorff, D. & Banas, B. The mesangial cell revisited: no cell is an island. J. Am. Soc. Nephrol. 20, 1179–1187 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Ciechanowicz, A., Brodkiewicz, A., Binczak-Kuleta, A., Parczewski, M. & Czekalski, S. “Treasure your exceptions”: recent advances in molecular genetics of glomerular disease. J. Appl. Genet. 49, 93–99 (2008).

    Article  PubMed  Google Scholar 

  6. Lavin, P. J., Gbadegesin, R., Damodaran, T. V. & Winn, M. P. Therapeutic targets in focal and segmental glomerulosclerosis. Curr. Opin. Nephrol. Hypertens. 17, 386–392 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Patrakka, J. & Tryggvason, K. New insights into the role of podocytes in proteinuria. Nat. Rev. Nephrol. 5, 463–468 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Tryggvason, K., Patrakka, J. & Wartiovaara, J. Hereditary proteinuria syndromes and mechanisms of proteinuria. N. Engl. J. Med. 354, 1387–1401 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Kestila, M. et al. Positionally cloned gene for a novel glomerular protein—nephrin—is mutated in congenital nephrotic syndrome. Mol. Cell 1, 575–582 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Ahvenainen, E. K., Hallman, N. & Hjelt, L. Nephrotic syndrome in newborn and young infants. Ann. Paediatr. Fenn. 2, 227–241 (1956).

    CAS  PubMed  Google Scholar 

  11. Beltcheva, O., Martin, P., Lenkkeri, U. & Tryggvason, K. Mutation spectrum in the nephrin gene (NPHS1) in congenital nephrotic syndrome. Hum. Mutat. 17, 368–373 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Ruotsalainen, V. et al. Nephrin is specifically located at the slit diaphragm of glomerular podocytes. Proc. Natl Acad. Sci. USA 96, 7962–7967 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Olsen, A. S., Georgescu, A., Johnson, S. & Carrano, A. V. Assembly of a 1-Mb restriction-mapped cosmid contig spanning the candidate region for Finnish congenital nephrosis (NPHS1) in 19q13.1. Genomics 34, 223–225 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Lenkkeri, U. et al. Structure of the gene for congenital nephrotic syndrome of the finnish type (NPHS1) and characterization of mutations. Am. J. Hum. Genet. 64, 51–61 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Holzman, L. B. et al. Nephrin localizes to the slit pore of the glomerular epithelial cell. Kidney Int. 56, 1481–1491 (1999).

    Article  PubMed  Google Scholar 

  16. Lahdenpera, J. et al. Clustering-induced tyrosine phosphorylation of nephrin by Src family kinases. Kidney Int. 64, 404–413 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Verma, R. et al. Fyn binds to and phosphorylates the kidney slit diaphragm component nephrin. J. Biol. Chem. 278, 20716–20723 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Li, H., Lemay, S., Aoudjit, L., Kawachi, H. & Takano, T. SRC-family kinase Fyn phosphorylates the cytoplasmic domain of nephrin and modulates its interaction with podocin. J. Am. Soc. Nephrol. 15, 3006–3015 (2004).

    Article  PubMed  Google Scholar 

  19. Koziell, A. et al. Genotype/phenotype correlations of NPHS1 and NPHS2 mutations in nephrotic syndrome advocate a functional inter-relationship in glomerular filtration. Hum. Mol. Genet. 11, 379–388 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Boute, N. et al. NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat. Genet. 24, 349–354 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Roselli, S. et al. Podocin localizes in the kidney to the slit diaphragm area. Am. J. Pathol. 160, 131–139 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Roselli, S. et al. Early glomerular filtration defect and severe renal disease in podocin-deficient mice. Mol. Cell Biol. 24, 550–560 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shih, N. Y. et al. Congenital nephrotic syndrome in mice lacking CD2-associated protein. Science 286, 312–315 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Fukasawa, H., Bornheimer, S., Kudlicka, K. & Farquhar, M. G. Slit diaphragms contain tight junction proteins. J. Am. Soc. Nephrol. 20, 1491–1503 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hofmann, T. et al. Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397, 259–263 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Reiser, J. et al. TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat. Genet. 37, 739–744 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fuchshuber, A. et al. Mapping a gene (SRN1) to chromosome 1q25-q31 in idiopathic nephrotic syndrome confirms a distinct entity of autosomal recessive nephrosis. Hum. Mol. Genet. 4, 2155–2158 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Hinkes, B. G. et al. Nephrotic syndrome in the first year of life: two thirds of cases are caused by mutations in 4 genes (NPHS1, NPHS2, WT1, and LAMB2). Pediatrics 119, e907–e919 (2007).

    Article  PubMed  Google Scholar 

  29. Nagase, T., Kikuno, R., Ishikawa, K., Hirosawa, M. & Ohara, O. Prediction of the coding sequences of unidentified human genes. XVII. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res. 7, 143–150 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Hinkes, B. et al. Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible. Nat. Genet. 38, 1397–1405 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Zhou, W. & Hildebrandt, F. Molecular cloning and expression of phospholipase C epsilon 1 in zebrafish. Gene Expr. Patterns 9, 282–288 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Shih, N. Y. et al. CD2AP localizes to the slit diaphragm and binds to nephrin via a novel C-terminal domain. Am. J. Pathol. 159, 2303–2308 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dustin, M. L. et al. A novel adaptor protein orchestrates receptor patterning and cytoskeletal polarity in T-cell contacts. Cell 94, 667–677 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Kim, J. M. et al. CD2-associated protein haploinsufficiency is linked to glomerular disease susceptibility. Science 300, 1298–1300 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Gigante, M. et al. CD2AP mutations are associated with sporadic nephrotic syndrome and focal segmental glomerulosclerosis (FSGS). Nephrol. Dial. Transplant. 24, 1858–1864 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Löwik, M. et al. Bigenic heterozygosity and the development of steroid-resistant focal segmental glomerulosclerosis. Nephrol. Dial. Transplant. 23, 3146–3151 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Löwik, M. M. et al. Focal segmental glomerulosclerosis in a patient homozygous for a CD2AP mutation. Kidney Int. 72, 1198–1203 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Honda, K. et al. Actinin-4, a novel actin-bundling protein associated with cell motility and cancer invasion. J. Cell. Biol. 140, 1383–1393 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kaplan, J. M. et al. Mutations in ACTN4, encoding alpha-actinin-4, cause familial focal segmental glomerulosclerosis. Nat. Genet. 24, 251–256 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Weins, A. et al. Disease-associated mutant alpha-actinin-4 reveals a mechanism for regulating its F-actin-binding affinity. Proc. Natl Acad. Sci. USA 104, 16080–16085 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ihalmo, P. et al. Association analysis of podocyte slit diaphragm genes as candidates for diabetic nephropathy. Diabetologia 51, 86–90 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Woudenberg-Vrenken, T. E., Bindels, R. J. & Hoenderop, J. G. The role of transient receptor potential channels in kidney disease. Nat. Rev. Nephrol. 5, 441–449 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Winn, M. P. et al. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308, 1801–1804 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Dietrich, A. et al. Increased vascular smooth muscle contractility in TRPC6−/− mice. Mol. Cell Biol. 25, 6980–6989 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Moller, C. C. et al. Induction of TRPC6 channel in acquired forms of proteinuric kidney disease. J. Am. Soc. Nephrol. 18, 29–36 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Spassova, M. A., Hewavitharana, T., Xu, W., Soboloff, J. & Gill, D. L. A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc. Natl Acad. Sci. USA 103, 16586–16591 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zenker, M., Machuca, E. & Antignac, C. Genetics of nephrotic syndrome: new insights into molecules acting at the glomerular filtration barrier. J. Mol. Med. 87, 849–857 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Epstein, C. J. et al. Hereditary macrothrombocytopathia, nephritis and deafness. Am. J. Med. 52, 299–310 (1972).

    Article  CAS  PubMed  Google Scholar 

  49. Peterson, L. C., Rao, K. V., Crosson, J. T. & White, J. G. Fechtner syndrome—a variant of Alport's syndrome with leukocyte inclusions and macrothrombocytopenia. Blood 65, 397–406 (1985).

    CAS  PubMed  Google Scholar 

  50. Saez, C. G., Myers, J. C., Shows, T. B. & Leinwand, L. A. Human nonmuscle myosin heavy chain mRNA: generation of diversity through alternative polyadenylylation. Proc. Natl Acad. Sci. USA 87, 1164–1168 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gershoni-Baruch, R., Baruch, Y., Viener, A. & Lichtig, C. Fechtner syndrome: clinical and genetic aspects. Am. J. Med. Genet. 31, 357–367 (1988).

    Article  CAS  PubMed  Google Scholar 

  52. Kao, W. H. et al. MYH9 is associated with nondiabetic end-stage renal disease in African Americans. Nat. Genet. 40, 1185–1192 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Kopp, J. B. et al. MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis. Nat. Genet. 40, 1175–1184 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Matsushita, T. et al. Targeted disruption of mouse ortholog of the human MYH9 responsible for macrothrombocytopenia with different organ involvement: hematological, nephrological, and otological studies of heterozygous KO mice. Biochem. Biophys. Res. Commun. 325, 1163–1171 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Haber, D. A. & Buckler, A. J. WT1: a novel tumor suppressor gene inactivated in Wilms' tumor. New Biol. 4, 97–106 (1992).

    CAS  PubMed  Google Scholar 

  56. Haber, D. A. et al. An internal deletion within an 11p13 zinc finger gene contributes to the development of Wilms' tumor. Cell 61, 1257–1269 (1990).

    Article  CAS  PubMed  Google Scholar 

  57. Call, K. M. et al. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms' tumor locus. Cell 60, 509–520 (1990).

    Article  CAS  PubMed  Google Scholar 

  58. Morrison, A. A., Viney, R. L., Saleem, M. A. & Ladomery, M. R. New insights into the function of the Wilms tumor suppressor gene WT1 in podocytes. Am. J. Physiol. Renal Physiol. 295, F12–F17 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Pelletier, J. et al. Germline mutations in the Wilms' tumor suppressor gene are associated with abnormal urogenital development in Denys-Drash syndrome. Cell 67, 437–447 (1991).

    Article  CAS  PubMed  Google Scholar 

  60. Coleman, M. A., Eisen, J. A. & Mohrenweiser, H. W. Cloning and characterization of HARP/SMARCAL1: a prokaryotic HepA-related SNF2 helicase protein from human and mouse. Genomics 65, 274–282 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Gubler, M. C. Inherited diseases of the glomerular basement membrane. Nat. Clin. Pract. Nephrol. 4, 24–37 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Goldberg, S., Harvey, S. J., Cunningham, J., Tryggvason, K. & Miner, J. H. Glomerular filtration is normal in the absence of both agrin and perlecanheparan sulfate from the glomerular basement membrane. Nephrol. Dial. Transplant. 24, 2044–2051 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Beirowski, B., Weber, M. & Gross, O. Chronic renal failure and shortened lifespan in COL4A3± mice: an animal model for thin basement membrane nephropathy. J. Am. Soc. Nephrol. 17, 1986–1994 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Hudson, B. G., Tryggvason, K., Sundaramoorthy, M. & Neilson, E. G. Alport's syndrome, Goodpasture's syndrome, and type IV collagen. N. Engl. J. Med. 348, 2543–2556 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Timpl, R. & Brown, J. C. The laminins. Matrix Biol. 14, 275–281 (1994).

    Article  CAS  PubMed  Google Scholar 

  66. Alport, A. C. Hereditary familial congenital haemorrhagic nephritis. BMJ I, 504–506 (1927).

    Article  Google Scholar 

  67. Rayat, C. S. et al. Glomerular morphometry in biopsy evaluation of minimal change disease, membranous glomerulonephritis, thin basement membrane disease and Alport's syndrome. Anal. Quant. Cytol. Histol. 29, 173–182 (2007).

    PubMed  Google Scholar 

  68. Barker, D. F. et al. Identification of mutations in the COL4A5 collagen gene in Alport syndrome. Science 248, 1224–1227 (1990).

    Article  CAS  PubMed  Google Scholar 

  69. Hostikka, S. L. et al. Identification of a distinct type IV collagen alpha chain with restricted kidney distribution and assignment of its gene to the locus of X chromosome-linked Alport syndrome. Proc. Natl Acad. Sci. USA, 87, 1606–1610 (1990).

    Article  CAS  Google Scholar 

  70. Myers, J. C. et al. Molecular cloning of alpha 5(IV) collagen and assignment of the gene to the region of the X chromosome containing the Alport syndrome locus. Am. J. Hum. Genet. 46, 1024–1033 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Heidet, L. & Gubler, M. C. The renal lesions of Alport syndrome. J. Am. Soc. Nephrol. 20, 1210–1215 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Perkoff, G. T., Stephens, F. E., Dolowitz, D. A. & Tyler, F. H. A clinical study of hereditary interstitial pyelonephritis. AMA Arch. Intern. Med. 88, 191–200 (1951).

    Article  CAS  PubMed  Google Scholar 

  73. Kashtan, C. E. Alport syndrome. An inherited disorder of renal, ocular, and cochlear basement membranes. Medicine (Baltimore) 78, 338–360 (1999).

    Article  CAS  Google Scholar 

  74. Zhou, J. et al. Deletion of the paired alpha 5(IV) and alpha 6(IV) collagen genes in inherited smooth muscle tumors. Science 261, 1167–1169 (1993).

    Article  CAS  PubMed  Google Scholar 

  75. Mochizuki, T. et al. Identification of mutations in the alpha 3(IV) and alpha 4(IV) collagen genes in autosomal recessive Alport syndrome. Nat. Genet. 8, 77–81 (1994).

    Article  CAS  PubMed  Google Scholar 

  76. Lemmink, H. H. et al. Mutations in the type IV collagen alpha 3 (COL4A3) gene in autosomal recessive Alport syndrome. Hum. Mol. Genet. 3, 1269–1273 (1994).

    Article  CAS  PubMed  Google Scholar 

  77. van der Loop, F. T. et al. Autosomal dominant Alport syndrome caused by a COL4A3 splice site mutation. Kidney Int. 58, 1870–1875 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Pescucci, C. et al. Autosomal-dominant Alport syndrome: natural history of a disease due to COL4A3 or COL4A4 gene. Kidney Int. 65, 1598–1603 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Tryggvason, K. & Patrakka, J. Thin basement membrane nephropathy. J. Am. Soc. Nephrol. 17, 813–822 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Mariyama, M., Zheng, K., Yang-Feng, T. L. & Reeders, S. T. Colocalization of the genes for the alpha 3(IV) and alpha 4(IV) chains of type IV collagen to chromosome 2 bands q35-q37. Genomics 13, 809–813 (1992).

    Article  CAS  PubMed  Google Scholar 

  81. Haas, M. Alport syndrome and thin glomerular basement membrane nephropathy: a practical approach to diagnosis. Arch. Pathol. Lab. Med. 133, 224–232 (2009).

    PubMed  Google Scholar 

  82. Zenker, M. et al. Human laminin beta2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities. Hum. Mol. Genet. 13, 2625–2632 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Zenker, M. et al. Congenital nephrosis, mesangial sclerosis, and distinct eye abnormalities with microcoria: an autosomal recessive syndrome. Am. J. Med. Genet. A 130A, 138–145 (2004).

    Article  PubMed  Google Scholar 

  84. Hasselbacher, K. et al. Recessive missense mutations in LAMB2 expand the clinical spectrum of LAMB2-associated disorders. Kidney Int. 70, 1008–1012 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Noakes, P. G. et al. The renal glomerulus of mice lacking s-laminin/laminin beta 2: nephrosis despite molecular compensation by laminin beta 1. Nat. Genet. 10, 400–406 (1995).

    Article  CAS  PubMed  Google Scholar 

  86. Bongers, E. M. et al. Genotype-phenotype studies in nail-patella syndrome show that LMX1B mutation location is involved in the risk of developing nephropathy. Eur. J. Hum. Genet. 13, 935–946 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Miner, J. H. et al. Transcriptional induction of slit diaphragm genes by Lmx1b is required in podocyte differentiation. J. Clin. Invest. 109, 1065–1072 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Suleiman, H. et al. The podocyte-specific inactivation of Lmx1b, Ldb1 and E2a yields new insight into a transcriptional network in podocytes. Dev. Biol. 304, 701–712 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Chen, H. et al. Limb and kidney defects in Lmx1b mutant mice suggest an involvement of LMX1B in human nail patella syndrome. Nat. Genet. 19, 51–55 (1998).

    Article  PubMed  Google Scholar 

  90. Chen, H. et al. Multiple calvarial defects in lmx1b mutant mice. Dev. Genet. 22, 314–320 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Heidet, L. et al. In vivo expression of putative LMX1B targets in nail-patella syndrome kidneys. Am. J. Pathol. 163, 145–155 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Barratt, J. & Eitner, F. Glomerular disease: sugars and immune complex formation in IgA nephropathy. Nat. Rev. Nephrol. 5, 612–614 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Suzuki, H. et al. Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J. Clin. Invest. 119, 1668–1677 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Gharavi, A. G. et al. IgA nephropathy, the most common cause of glomerulonephritis, is linked to 6q22–23 Nat. Genet. 26, 354–357 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Bisceglia, L. et al. Genetic heterogeneity in Italian families with IgA nephropathy: suggestive linkage for two novel IgA nephropathy loci. Am. J. Hum. Genet. 79, 1130–1134 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hiki, Y. et al. O-linked oligosaccharide on IgA1 hinge region in IgA nephropathy. Fundamental study for precise structure and possible role. Contrib. Nephrol. 111, 73–84 (1995).

    Article  CAS  PubMed  Google Scholar 

  97. Hiki, Y. et al. Association of asialo-galactosyl beta 1-3N-acetylgalactosamine on the hinge with a conformational instability of Jacalin-reactive immunoglobulin A1 in immunoglobulin A nephropathy. J. Am. Soc. Nephrol. 7, 955–960 (1996).

    CAS  PubMed  Google Scholar 

  98. Furlan, M. et al. von Willebrand factor-cleaving protease in thrombotic thrombocytopenic purpura and the hemolytic-uremic syndrome. N. Engl. J. Med. 339, 1578–1584 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. Levy, G. G. et al. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature 413, 488–494 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Fujioka, M. et al. ADAMTS13 gene deletion aggravates ischemic brain damage: a possible neuroprotective role of ADAMTS13 by ameliorating post-ischemic hypoperfusion. Blood 115, 1650–1653 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Zhao, B. Q. et al. von Willebrand factor-cleaving protease ADAMTS13 reduces ischemic brain injury in experimental stroke. Blood 114, 3329–3334 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Warwicker, P. et al. Genetic studies into inherited and sporadic hemolytic uremic syndrome. Kidney Int. 53, 836–844 (1998).

    Article  CAS  PubMed  Google Scholar 

  103. Jozsi, M. et al. Factor H autoantibodies in atypical hemolytic uremic syndrome correlate with CFHR1/CFHR3 deficiency. Blood 111, 1512–1514 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Zipfel, P. F. et al. Deletion of complement factor H-related genes CFHR1 and CFHR3 is associated with atypical hemolytic uremic syndrome. PLoS Genet. 3, e41 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Noris, M. et al. Familial haemolytic uraemic syndrome and an MCP mutation. Lancet 362, 1542–1547 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Caprioli, J. et al. Genetics of HUS: the impact of MCP, CFH, and IF mutations on clinical presentation, response to treatment, and outcome. Blood 108, 1267–1279 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Carreras, L. et al. Familial hypocomplementemic hemolytic uremic syndrome with HLA-A3, B7 haplotype. JAMA 245, 602–604 (1981).

    Article  CAS  PubMed  Google Scholar 

  108. Goicoechea de Jorge, E. et al. Gain-of-function mutations in complement factor B are associated with atypical hemolytic uremic syndrome. Proc. Natl Acad. Sci. USA 104, 240–245 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Fremeaux-Bacchi, V. et al. Mutations in complement C3 predispose to development of atypical hemolytic uremic syndrome. Blood 112, 4948–4952 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Delvaeye, M. et al. Thrombomodulin mutations in atypical hemolytic-uremic syndrome. N. Engl. J. Med. 361, 345–357 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Noris, M. & Remuzzi, G. Atypical hemolytic-uremic syndrome. N. Engl. J. Med. 361, 1676–1687 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Licht, C. & Fremeaux-Bacchi, V. Hereditary and acquired complement dysregulation in membranoproliferative glomerulonephritis. Thromb. Haemost. 101, 271–278 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Maeda, S. et al. Genetic variations associated with diabetic nephropathy and type II diabetes in a Japanese population. Kidney Int. Suppl. S43–S48 (2007).

    Article  CAS  Google Scholar 

  114. Ng, D. P. et al. Genetic variation at the SLC12A3 locus is unlikely to explain risk for advanced diabetic nephropathy in Caucasians with type 2 diabetes. Nephrol. Dial. Transplant. 23, 2260–2264 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Shimazaki, A. et al. ELMO1 increases expression of extracellular matrix proteins and inhibits cell adhesion to ECMs. Kidney Int. 70, 1769–1776 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Pezzolesi, M. G. et al. Confirmation of genetic associations at ELMO1 in the GoKinD collection supports its role as a susceptibility gene in diabetic nephropathy. Diabetes 58, 2698–2702 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Pezzolesi, M. G. et al. Genome-wide association scan for diabetic nephropathy susceptibility genes in type 1 diabetes. Diabetes 58, 1403–1410 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ni, X. et al. Molecular cloning and characterization of the protein 4.1O gene, a novel member of the protein 4.1 family with focal expression in ovary. J. Hum. Genet. 48, 101–106 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Ramez, M. et al. Distinct distribution of specific members of protein 4.1 gene family in the mouse nephron. Kidney Int. 63, 1321–1337 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Antonellis, A. & Green, E. D. The role of aminoacyl-tRNA synthetases in genetic diseases. Annu. Rev. Genomics Hum. Genet. 9, 87–107 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Saito, T. et al. Lipoprotein glomerulopathy: glomerular lipoprotein thrombi in a patient with hyperlipoproteinemia. Am. J. Kidney Dis. 13, 148–153 (1989).

    Article  CAS  PubMed  Google Scholar 

  122. Saito, T. [Lipoprotein glomerulopathy]. Nippon Jinzo Gakkai Shi (Suppl. 50th Ann.) 112–116 (2007).

  123. Ishimura, A. et al. Lipoprotein glomerulopathy induced by ApoE-Sendai is different from glomerular lesions in aged apoE-deficient mice. Clin. Exp. Nephrol. 13, 430–437 (2009).

    Article  PubMed  Google Scholar 

  124. Saito, T., Matsunaga, A. & Oikawa, S. Impact of lipoprotein glomerulopathy on the relationship between lipids and renal diseases. Am. J. Kidney Dis. 47, 199–211 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Opitz, J. M. et al. the genetics of angiokeratoma corporis diffusum (Fabry's disease) and its linkage relations with the Xg locus. Am. J. Hum. Genet. 17, 325–342 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Martins, A. M. et al. Guidelines to diagnosis and monitoring of Fabry disease and review of treatment experiences. J. Pediatr. 155, S19–S31 (2009).

    Article  PubMed  Google Scholar 

  127. Gotoda, T. et al. Differential phenotypic expression by three mutant alleles in familial lecithin:cholesterol acyltransferase deficiency. Lancet 338, 778–781 (1991).

    Article  CAS  PubMed  Google Scholar 

  128. Jahanzad, I., Amoueian, S. & Attaranzadeh, A. Familial lecithin-cholesterol acyltransferase deficiency. Arch. Iran Med. 12, 179–181 (2009).

    PubMed  Google Scholar 

  129. Lei, K. J., Shelly, L. L., Pan, C. J., Sidbury, J. B. & Chou, J. Y. Mutations in the glucose-6-phosphatase gene that cause glycogen storage disease type 1a. Science 262, 580–583 (1993).

    Article  CAS  PubMed  Google Scholar 

  130. Talente, G. M. et al. Glycogen storage disease in adults. Ann. Intern. Med. 120, 218–226 (1994).

    Article  CAS  PubMed  Google Scholar 

  131. Yiu, W. H. et al. Angiotensin mediates renal fibrosis in the nephropathy of glycogen storage disease type Ia. Kidney Int. 73, 716–723 (2008).

    Article  CAS  PubMed  Google Scholar 

  132. Rahman, S., Hargreaves, I., Clayton, P. & Heales, S. Neonatal presentation of coenzyme Q10 deficiency. J. Pediatr. 139, 456–458 (2001).

    Article  CAS  PubMed  Google Scholar 

  133. Salviati, L. et al. Infantile encephalomyopathy and nephropathy with CoQ10 deficiency: a CoQ10-responsive condition. Neurology 65, 606–608 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Diomedi-Camassei, F. et al. COQ2 nephropathy: a newly described inherited mitochondriopathy with primary renal involvement. J. Am. Soc. Nephrol. 18, 2773–2780 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Lopez, L. C. et al. Leigh syndrome with nephropathy and CoQ10 deficiency due to decaprenyl diphosphate synthase subunit 2 (PDSS2) mutations. Am. J. Hum. Genet. 79, 1125–1129 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Peng, M. et al. Primary coenzyme Q deficiency in Pdss2 mutant mice causes isolated renal disease. PLoS Genet. 4, e1000061 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Saiki, R. et al. Coenzyme Q10 supplementation rescues renal disease in Pdss2kd/kd mice with mutations in prenyl diphosphate synthase subunit 2. Am. J. Physiol. Renal Physiol. 295, F1535–F1544 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Yorifuji, T. et al. Nephropathy and growth hormone deficiency in a patient with mitochondrial tRNA(Leu(UUR)) mutation. J. Med. Genet. 33, 621–622 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lowik, M. M., Hol, F. A., Steenbergen, E. J., Wetzels, J. F. & van den Heuvel, L. P. Mitochondrial tRNALeu(UUR) mutation in a patient with steroid-resistant nephrotic syndrome and focal segmental glomerulosclerosis. Nephrol. Dial. Transplant. 20, 336–341 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Kurogouchi, F. et al. A case of mitochondrial cytopathy with a typical point mutation for MELAS, presenting with severe focal-segmental glomerulosclerosis as main clinical manifestation. Am. J. Nephrol. 18, 551–556 (1998).

    Article  CAS  PubMed  Google Scholar 

  141. Jansen, J. J. et al. Mutation in mitochondrial tRNA(Leu(UUR)) gene associated with progressive kidney disease. J. Am. Soc. Nephrol. 8, 1118–1124 (1997).

    CAS  PubMed  Google Scholar 

  142. Quintero-Del-Rio, A. I., Kelly, J. A., Kilpatrick, J., James, J. A. & Harley, J. B. The genetics of systemic lupus erythematosus stratified by renal disease: linkage at 10q22.3 (SLEN1), 2q34–35 (SLEN2), and 11p15.6 (SLEN3). Genes Immun. 3 (Suppl. 1), S57–S62 (2002).

    Article  CAS  PubMed  Google Scholar 

  143. Morel, L. Genetics of human lupus nephritis. Semin. Nephrol. 27, 2–11 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Borgmann, S. & Haubitz, M. Genetic impact of pathogenesis and prognosis of ANCA-associated vasculitides. Clin. Exp. Rheumatol. 22, S79–S86 (2004).

    CAS  PubMed  Google Scholar 

  145. Jagiello, P. et al. New genomic region for Wegener's granulomatosis as revealed by an extended association screen with 202 apoptosis-related genes. Hum. Genet. 114, 468–477 (2004).

    Article  CAS  PubMed  Google Scholar 

  146. Brown, E. J. et al. Mutations in the formin gene INF2 cause focal segmental glomerulosclerosis. Nat. Genet. 42, 72–76 (2010).

    Article  CAS  PubMed  Google Scholar 

  147. Kambham, N. et al. Congenital focal segmental glomerulosclerosis associated with beta4 integrin mutation and epidermolysis bullosa. Am. J. Kidney Dis. 36, 190–196 (2000).

    Article  CAS  PubMed  Google Scholar 

  148. Agarwal, A. K. et al. Focal segmental glomerulosclerosis in patients with mandibuloacral dysplasia owing to ZMPSTE24 deficiency. J. Investig. Med. 54, 208–213 (2006).

    Article  PubMed  Google Scholar 

  149. Berkovic, S. F. et al. Array-based gene discovery with three unrelated subjects shows SCARB2/LIMP-2 deficiency causes myoclonus epilepsy and glomerulosclerosis. Am. J. Hum. Genet. 82, 673–684 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Balreira, A. et al. A nonsense mutation in the LIMP-2 gene associated with progressive myoclonic epilepsy and nephrotic syndrome. Hum. Mol. Genet. 17, 2238–2243 (2008).

    Article  CAS  PubMed  Google Scholar 

  151. Copelovitch, L., Guttenberg, M., Pollak, M. R. & Kaplan, B. S. Reninangiotensin axis blockade reduces proteinuria in presymptomatic patients with familial FSGS. Pediatr. Nephrol. 22, 1779–1784 (2007).

    Article  PubMed  Google Scholar 

  152. Wang, S. X. et al. Recurrence of nephrotic syndrome after transplantation in CNF is due to autoantibodies to nephrin. Exp. Nephrol. 9, 327–331 (2001).

    Article  CAS  PubMed  Google Scholar 

  153. Kuusniemi, A. M. et al. Plasma exchange and retransplantation in recurrent nephrosis of patients with congenital nephrotic syndrome of the Finnish type (NPHS1). Transplantation 83, 1316–1323 (2007).

    Article  PubMed  Google Scholar 

  154. Benfield, M. R., McDonald, R. A., Bartosh, S., Ho, P. L. & Harmon, W. Changing trends in pediatric transplantation: 2001 Annual Report of the North American Pediatric Renal Transplant Cooperative Study. Pediatr. Transplant. 7, 321–335 (2003).

    Article  PubMed  Google Scholar 

  155. Callis, L., Vila, A., Carrera, M. & Nieto, J. Long-term effects of cyclosporine A in Alport's syndrome. Kidney Int. 55, 1051–1056 (1999).

    Article  CAS  PubMed  Google Scholar 

  156. Chen, D. et al. Cyclosporine A slows the progressive renal disease of Alport syndrome (X-linked hereditary nephritis): results from a canine model. J. Am. Soc. Nephrol. 14, 690–698 (2003).

    Article  CAS  PubMed  Google Scholar 

  157. Gross, O. et al. Antifibrotic, nephroprotective potential of ACE-inhibitor vs AT1 antagonist in a murine model of renal fibrosis. Nephrol. Dial. Transplant. 19, 1716–1723 (2004).

    Article  CAS  PubMed  Google Scholar 

  158. Grodecki, K. M. et al. Treatment of X-linked hereditary nephritis in Samoyed dogs with angiotensin converting enzyme (ACE) inhibitor. J. Comp. Pathol. 117, 209–225 (1997).

    Article  CAS  PubMed  Google Scholar 

  159. Gross, O. et al. Preemptive ramipril therapy delays renal failure and reduces renal fibrosis in COL4A3-knockout mice with Alport syndrome. Kidney Int. 63, 438–446 (2003).

    Article  CAS  PubMed  Google Scholar 

  160. Ninichuk, V. et al. Delayed chemokine receptor 1 blockade prolongs survival in collagen 4A3-deficient mice with Alport disease. J. Am. Soc. Nephrol. 16, 977–985 (2005).

    Article  CAS  PubMed  Google Scholar 

  161. Katayama, K. et al. Irradiation prolongs survival of Alport mice. J. Am. Soc. Nephrol. 19, 1692–1700 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. LeBleu, V. et al. Stem cell therapies benefit Alport syndrome. J. Am. Soc. Nephrol. 20, 2359–2370 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Gross, O. et al. Stem cell therapy for Alport syndrome: the hope beyond the hype. Nephrol. Dial. Transplant. 24, 731–734 (2009).

    Article  CAS  PubMed  Google Scholar 

  164. LeBleu, V. S. & Kalluri, R. Stem cell-based therapy for glomerular diseases: an evolving concept. J. Am. Soc. Nephrol. 19, 1621–1623 (2008).

    Article  PubMed  Google Scholar 

  165. Wong, C. J. & Rogers, I. Cell therapy for Alport syndrome. J. Am. Soc. Nephrol. 20, 2279–2281 (2009).

    Article  PubMed  Google Scholar 

  166. Schiffmann, R. et al. Enzyme replacement therapy in Fabry disease: a randomized controlled trial. JAMA 285, 2743–2749 (2001).

    Article  CAS  PubMed  Google Scholar 

  167. Eng, C. M. et al. Safety and efficacy of recombinant human alpha-galactosidase A—replacement therapy in Fabry's disease. N. Engl. J. Med. 345, 9–16 (2001).

    Article  CAS  PubMed  Google Scholar 

  168. Mehta, A. et al. Enzyme replacement therapy with agalsidase alfa in patients with Fabry's disease: an analysis of registry data. Lancet 374, 1986–1996 (2009).

    Article  CAS  PubMed  Google Scholar 

  169. Malina, M., Cinek, O., Janda, J. & Seeman, T. Partial remission with cyclosporine A in a patient with nephrotic syndrome due to NPHS2 mutation. Pediatr. Nephrol. 24, 2051–2053 (2009).

    Article  PubMed  Google Scholar 

  170. Gellermann, J., Stefanidis, C. J., Mitsioni, A. & Querfeld, U. Successful treatment of steroid-resistant nephrotic syndrome associated with WT1 mutations. Pediatr. Nephrol. 25, 1285–1289 (2010).

    Article  PubMed  Google Scholar 

  171. Lawless, M. W., Mankan, A. K., Gray, S. G. & Norris, S. Endoplasmic reticulum stress—a double edged sword for Z alpha-1 antitrypsin deficiency hepatoxicity. Int. J. Biochem. Cell Biol. 40, 1403–1414 (2008).

    Article  CAS  PubMed  Google Scholar 

  172. Inagi, R. Endoplasmic reticulum stress as a progression factor for kidney injury. Curr. Opin. Pharmacol. 10, 156–165 (2010).

    Article  CAS  PubMed  Google Scholar 

  173. Liu, X. L. et al. Defective trafficking of nephrin missense mutants rescued by a chemical chaperone. J. Am. Soc. Nephrol. 15, 1731–1738 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' work described in this Review was supported by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (19590939 to RI) and a grant from The Kidney Foundation, Japan (JKFB09-2 to RI). We are grateful to Masaomi Nangaku, MD, PhD, of Tokyo University School of Medicine, for critically reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

C.-K. Chiang and R. Inagi contributed equally to researching data for the article, discussing content, writing, and reviewing/editing the manuscript before submission.

Corresponding author

Correspondence to Reiko Inagi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiang, CK., Inagi, R. Glomerular diseases: genetic causes and future therapeutics. Nat Rev Nephrol 6, 539–554 (2010). https://doi.org/10.1038/nrneph.2010.103

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2010.103

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing