Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cardiovascular risk and management in chronic kidney disease

Abstract

Chronic kidney disease (CKD) is associated with accelerated progression of cardiovascular disease, perhaps because patients with CKD have a high burden of traditional cardiovascular risk factors in addition to a range of nontraditional risk factors such as inflammation and abnormal metabolism of calcium and phosphate. Although the cardiovascular burden of CKD is well documented, potentially beneficial therapies are sometimes underused in patients with stage 3–4 CKD and are rarely studied in patients on dialysis. In this Review, we describe the epidemiology of cardiovascular disease in patients with stage 3–5 CKD (excluding kidney transplant recipients) and outline cardiovascular risk factors that are relevant in this population; we then discuss the implications of this knowledge for the optimal management of cardiovascular risk in this setting. Finally, we highlight opportunities for further research.

Key Points

  • Chronic kidney disease (CKD) is considered an independent cardiovascular risk factor

  • Although people with CKD carry a high burden of traditional cardiovascular risk factors, a host of other nontraditional risk factors might also contribute to their excess cardiovascular risk

  • Available data suggest that there is little reason to manage cardiovascular risk in patients with stage 3–4 CKD differently than in the general population

  • Strong recommendations about cardioprotective treatment are difficult to make in patients on dialysis; guidelines for the general population should be cautiously followed, with careful attention to adverse events

  • Clinicians should consider enrolling patients on dialysis in randomized trials of cardioprotective therapies

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Contribution of traditional, nontraditional and dialysis-related risk factors to the cardiovascular burden of patients with chronic kidney disease.

Similar content being viewed by others

References

  1. Weiner, D. E. et al. Chronic kidney disease as a risk factor for cardiovascular disease and all-cause mortality: a pooled analysis of community-based studies. J. Am. Soc. Nephrol. 15, 1307–1315 (2004).

    Article  PubMed  Google Scholar 

  2. Sarnak, M. J. et al. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Hypertension 42, 1050–1065 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Levey, A. S. et al. National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Ann. Intern. Med. 139, 137–147 (2003).

    Article  PubMed  Google Scholar 

  4. Gill, J. S. Cardiovascular disease in transplant recipients: current and future treatment strategies. Clin. J. Am. Soc. Nephrol. 3 (Suppl. 2), S29–S37 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Shulman, N. B. et al. Prognostic value of serum creatinine and effect of treatment of hypertension on renal function. Results from the hypertension detection and follow-up program. The Hypertension Detection and Follow-up Program Cooperative Group. Hypertension 13 (Suppl.), S180–S193 (1989).

    Google Scholar 

  6. Ezekowitz, J. et al. The association among renal insufficiency, pharmacotherapy, and outcomes in 6,427 patients with heart failure and coronary artery disease. J. Am. Coll. Cardiol. 44, 1587–1592 (2004).

    Article  PubMed  Google Scholar 

  7. Tonelli, M. et al. Effect of pravastatin on cardiovascular events in people with chronic kidney disease. Circulation 110, 1557–1563 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Collins, R., Armitage, J., Parish, S., Sleigh, P. & Peto, R. MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial. Lancet 361, 2005–2016 (2003).

    Article  PubMed  Google Scholar 

  9. Garg, A. X., Clark, W. F., Haynes, R. B. & House, A. A. Moderate renal insufficiency and the risk of cardiovascular mortality: results from the NHANES I. Kidney Int. 61, 1486–1494 (2002).

    Article  PubMed  Google Scholar 

  10. Menon, V. et al. Cystatin C as a risk factor for outcomes in chronic kidney disease. Ann. Intern. Med. 147, 19–27 (2007).

    Article  PubMed  Google Scholar 

  11. Shlipak, M. G. et al. Cystatin C and prognosis for cardiovascular and kidney outcomes in elderly persons without chronic kidney disease. Ann. Intern. Med. 145, 237–246 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Garg, A. X., Kiberd, B. A., Clark, W. F., Haynes, R. B. & Clase, C. M. Albuminuria and renal insufficiency prevalence guides population screening: results from the NHANES III. Kidney Int. 61, 2165–2175 (2002).

    Article  PubMed  Google Scholar 

  13. Arnlov, J. et al. Low-grade albuminuria and incidence of cardiovascular disease events in nonhypertensive and nondiabetic individuals: the Framingham Heart Study. Circulation 112, 969–975 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Foley, R. N., Parfrey, P. S. & Sarnak, M. J. Clinical epidemiology of cardiovascular disease in chronic renal disease. Am. J. Kidney Dis. 32, S112–S119 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Baigent, C., Burbury, K. & Wheeler, D. Premature cardiovascular disease in chronic renal failure. Lancet 356, 147–152 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Foley, R. N. et al. Chronic kidney disease and the risk for cardiovascular disease, renal replacement, and death in the United States Medicare population, 1998 to 1999. J. Am. Soc. Nephrol. 16, 489–495 (2005).

    Article  PubMed  Google Scholar 

  17. Foley, R. N., Wang, C. & Collins, A. J. Cardiovascular risk factor profiles and kidney function stage in the US general population: the NHANES III study. Mayo Clin. Proc. 80, 1270–1277 (2005).

    Article  PubMed  Google Scholar 

  18. Shlipak, M. G. et al. Cardiovascular mortality risk in chronic kidney disease: comparison of traditional and novel risk factors. JAMA 293, 1737–1745 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Muntner, P., He, J., Astor, B. C., Folsom, A. R. & Coresh, J. Traditional and nontraditional risk factors predict coronary heart disease in chronic kidney disease: results from the atherosclerosis risk in communities study. J. Am. Soc. Nephrol. 16, 529–538 (2005).

    Article  PubMed  Google Scholar 

  20. Port, F. K. et al. Predialysis blood pressure and mortality risk in a national sample of maintenance hemodialysis patients. Am. J. Kidney Dis. 33, 507–517 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Foley, R. N. Cardiac disease in chronic uremia: can it explain the reverse epidemiology of hypertension and survival in dialysis patients? Semin. Dial. 17, 275–278 (2004).

    Article  PubMed  Google Scholar 

  22. Kasiske, B. L. Hyperlipidemia in patients with chronic renal disease. Am. J. Kidney Dis. 32, S142–S156 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Liu, Y. et al. Association between cholesterol level and mortality in dialysis patients: role of inflammation and malnutrition. JAMA 291, 451–459 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Kovesdy, C. P., Astor, B. C., Longenecker, J. C. & Coresh, J. Association of kidney function with serum lipoprotein(a) level: the third National Health and Nutrition Examination Survey (1991–1994). Am. J. Kidney Dis. 40, 899–908 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Kwan, B. C., Kronenberg, F., Beddhu, S. & Cheung, A. K. Lipoprotein metabolism and lipid management in chronic kidney disease. J. Am. Soc. Nephrol. 18, 1246–1261 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Strippoli, G. F. et al. Effects of statins in patients with chronic kidney disease: meta-analysis and meta-regression of randomised controlled trials. BMJ 336, 645–651 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shepherd, J. et al. Intensive lipid lowering with atorvastatin in patients with coronary heart disease and chronic kidney disease: the TNT (Treating to New Targets.) study. J. Am. Coll. Cardiol. 51, 1448–1454 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Wanner, C. et al. Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N. Engl. J. Med. 353, 238–248 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Tonelli, M. et al. Effect of pravastatin in people with diabetes and chronic kidney disease. J. Am. Soc. Nephrol. 16, 3748–3754 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Williams, M. E., Lacson, E., Jr, Teng, M., Ofsthun, N. & Lazarus, J. M. Hemodialyzed type I and type II diabetic patients in the US: characteristics, glycemic control, and survival. Kidney Int. 70, 1503–1509 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Kalantar-Zadeh, K. et al. A1C and survival in maintenance hemodialysis patients. Diabetes Care 30, 1049–1055 (2007).

    Article  PubMed  Google Scholar 

  32. Feldt-Rasmussen, B. Is there a need to optimize glycemic control in hemodialyzed diabetic patients? Kidney Int. 70, 1392–1394 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Peacock, T. P. et al. Comparison of glycated albumin and hemoglobin A1c levels in diabetic subjects on hemodialysis. Kidney Int. 73, 1062–1068 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Combe, C. et al. Kidney Disease Outcomes Quality Initiative (K/DOQI) and the Dialysis Outcomes and Practice Patterns Study (DOPPS): nutrition guidelines, indicators, and practices. Am. J. Kidney Dis. 44, 39–46 (2004).

    Article  PubMed  Google Scholar 

  35. Kalantar-Zadeh, K., Abbott, K. C., Salahudeen, A. K., Kilpatrick, R. D. & Horwich, T. B. Survival advantages of obesity in dialysis patients. Am. J. Clin. Nutr. 81, 543–554 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Collins, A. J., Ma, J. Z. & Ebben, J. Impact of hematocrit on morbidity and mortality. Semin. Nephrol. 20, 345–349 (2000).

    CAS  PubMed  Google Scholar 

  37. [No authors listed] Association between recombinant human erythropoietin and quality of life and exercise capacity of patients receiving haemodialysis. Canadian Erythropoietin Study Group. BMJ 300, 573–578 (1990).

  38. Besarab, A. et al. The effects of normal as compared with low hematocrit values in patients with cardiac disease who are receiving hemodialysis and epoetin. N. Engl. J. Med. 339, 584–590 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Singh, A. K. et al. Correction of anemia with epoetin alfa in chronic kidney disease. N. Engl. J. Med. 355, 2085–2098 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Rossert, J. et al. Effect of early correction of anemia on the progression of CKD. Am. J. Kidney Dis. 47, 738–750 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Drueke, T. B. et al. Normalization of hemoglobin level in patients with chronic kidney disease and anemia. N. Engl. J. Med. 355, 2071–2084 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Pfeffer, M. A. Critical missing data on erythropoiesis-stimulating agents in CKD: first beat placebo. Am. J. Kidney Dis. 51, 366–369 (2008).

    Article  PubMed  Google Scholar 

  43. Block, G. A., Hulbert-Shearon, T. E., Levin, N. W. & Port, F. K. Association of serum phosphorus and calcium × phosphate product with mortality risk in chronic hemodialysis patients: a national study. Am. J. Kidney Dis. 31, 607–617 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. London, G. M. et al. Arterial media calcification in end-stage renal disease: impact on all-cause and cardiovascular mortality. Nephrol. Dial. Transplant. 18, 1731–1740 (2003).

    Article  PubMed  Google Scholar 

  45. Goodman, W. G. et al. Vascular calcification in chronic kidney disease. Am. J. Kidney Dis. 43, 572–579 (2004).

    Article  PubMed  Google Scholar 

  46. Kestenbaum, B. et al. Serum phosphate levels and mortality risk among people with chronic kidney disease. J. Am. Soc. Nephrol. 16, 520–528 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Kramer, H., Toto, R., Peshock, R., Cooper, R. & Victor, R. Association between chronic kidney disease and coronary artery calcification: the Dallas Heart Study. J. Am. Soc. Nephrol. 16, 507–513 (2005).

    Article  PubMed  Google Scholar 

  48. Block, G. A., Raggi, P., Bellasi, A., Kooienga, L. & Spiegel, D. M. Mortality effect of coronary calcification and phosphate binder choice in incident hemodialysis patients. Kidney Int. 71, 438–441 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Suki, W. N. et al. Effects of sevelamer and calcium-based phosphate binders on mortality in hemodialysis patients. Kidney Int. 72, 1130–1137 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. London, G. M., Marchais, S. J., Guerin, A. P. & Metivier, F. Arteriosclerosis, vascular calcifications and cardiovascular disease in uremia. Curr. Opin. Nephrol. Hypertens. 14, 525–531 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Tonelli, M., Sacks, F., Pfeffer, M., Gao, Z. & Curhan, G. Relation between serum phosphate level and cardiovascular event rate in people with coronary disease. Circulation 112, 2627–2633 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Thadhani, R. Targeted ablation of the vitamin D 1α-hydroxylase gene: getting to the heart of the matter. Kidney Int. 74, 141–143 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Harnett, J. D., Kent, G. M., Barre, P. E., Taylor, R. & Parfrey, P. S. Risk factors for the development of left ventricular hypertrophy in a prospectively followed cohort of dialysis patients. J. Am. Soc. Nephrol. 4, 1486–1490 (1994).

    CAS  PubMed  Google Scholar 

  54. Zoccali, C. et al. Left ventricular mass monitoring in the follow-up of dialysis patients: prognostic value of left ventricular hypertrophy progression. Kidney Int. 65, 1492–1498 (2004).

    Article  PubMed  Google Scholar 

  55. Stack, A. G. & Saran, R. Clinical correlates and mortality impact of left ventricular hypertrophy among new ESRD patients in the United States. Am. J. Kidney Dis. 40, 1202–1210 (2002).

    Article  PubMed  Google Scholar 

  56. Culleton, B. F. et al. Effect of frequent nocturnal hemodialysis vs conventional hemodialysis on left ventricular mass and quality of life: a randomized controlled trial. JAMA 298, 1291–1299 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Deckert, T. et al. Microalbuminuria. Implications for micro- and macrovascular disease. Diabetes Care 15, 1181–1191 (1992).

    Article  CAS  PubMed  Google Scholar 

  58. Anavekar, N. S. & Pfeffer, M. A. Cardiovascular risk in chronic kidney disease. Kidney Int. (Suppl.) S11–S15 (2004).

  59. de Zeeuw, D. et al. Proteinuria, a target for renoprotection in patients with type 2 diabetic nephropathy: lessons from RENAAL. Kidney Int. 65, 2309–2320 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Stenvinkel, P. & Alvestrand, A. Inflammation in end-stage renal disease: sources, consequences, and therapy. Semin. Dial. 15, 329–337 (2002).

    Article  PubMed  Google Scholar 

  61. Pecoits-Filho, R., Barany, P., Lindholm, B., Heimburger, O. & Stenvinkel, P. Interleukin-6 is an independent predictor of mortality in patients starting dialysis treatment. Nephrol. Dial. Transplant. 17, 1684–1688 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Shlipak, M. G. et al. Elevations of inflammatory and procoagulant biomarkers in elderly persons with renal insufficiency. Circulation 107, 87–92 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Knoll, G. A. et al. Thrombophilia and the risk for hemodialysis vascular access thrombosis. J. Am. Soc. Nephrol. 16, 1108–1114 (2005).

    Article  PubMed  Google Scholar 

  64. Vaziri, N. D., Gonzales, E. C., Wang, J. & Said, S. Blood coagulation, fibrinolytic, and inhibitory proteins in end-stage renal disease: effect of hemodialysis. Am. J. Kidney Dis. 23, 828–835 (1994).

    Article  CAS  PubMed  Google Scholar 

  65. Antithrombotic Trialists' Collaboration. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ 324, 71–86 (2002).

    Article  PubMed Central  Google Scholar 

  66. Lucius, R., Gallinat, S., Busche, S., Rosenstiel, P. & Unger, T. Beyond blood pressure: new roles for angiotensin II. Cell. Mol. Life Sci. 56, 1008–1019 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Mann, J. F., Gerstein, H. C., Pogue, J., Bosch, J. & Yusuf, S. Renal insufficiency as a predictor of cardiovascular outcomes and the impact of ramipril: the HOPE randomized trial. Ann. Intern. Med. 134, 629–636 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Balamuthusamy, S. et al. Renin angiotensin system blockade and cardiovascular outcomes in patients with chronic kidney disease and proteinuria: a meta-analysis. Am. Heart J. 155, 791–805 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Zannad, F. et al. Prevention of cardiovascular events in end-stage renal disease: results of a randomized trial of fosinopril and implications for future studies. Kidney Int. 70, 1318–1324 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Yusuf, S. et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N. Engl. J. Med. 358, 1547–1559 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Mann, J. F. et al. Renal outcomes with telmisartan, ramipril, or both, in people at high vascular risk (the ONTARGET study): a multicentre, randomised, double-blind, controlled trial. Lancet 372, 547–553 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Vaziri, N. D. Effect of chronic renal failure on nitric oxide metabolism. Am. J. Kidney Dis. 38, S74–S79 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Himmelfarb, J. Relevance of oxidative pathways in the pathophysiology of chronic kidney disease. Cardiol. Clin. 23, 319–330 (2005).

    Article  PubMed  Google Scholar 

  74. Tepel, M., van der Giet, M., Statz, M., Jankowski, J. & Zidek, W. The antioxidant acetylcysteine reduces cardiovascular events in patients with end-stage renal failure: a randomized, controlled trial. Circulation 107, 992–995 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Boaz, M. et al. Secondary prevention with antioxidants of cardiovascular disease in endstage renal disease (SPACE): randomised placebo-controlled trial. Lancet 356, 1213–1218 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Robinson, K., Mayer, E. & Jacobsen, D. W. Homocysteine and coronary artery disease. Cleve. Clin. J. Med. 61, 438–450 (1994).

    Article  CAS  PubMed  Google Scholar 

  77. Menon, V. et al. Relationship between homocysteine and mortality in chronic kidney disease. Circulation 113, 1572–1577 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Bostom, A. G. et al. High dose B-vitamin treatment of hyperhomocysteinemia in dialysis patients. Kidney Int. 49, 147–152 (1996).

    Article  CAS  PubMed  Google Scholar 

  79. Jamison, R. L. et al. Effect of homocysteine lowering on mortality and vascular disease in advanced chronic kidney disease and end-stage renal disease: a randomized controlled trial. JAMA 298, 1163–1170 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Bailie, G. R. et al. Patterns of medication use in the RRI-CKD study: focus on medications with cardiovascular effects. Nephrol. Dial. Transplant. 20, 1110–1115 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Lahoz, C. et al. Achievement of therapeutic goals and utilization of evidence-based cardiovascular therapies in coronary heart disease patients with chronic kidney disease. Am. J. Cardiol. 101, 1098–1102 (2008).

    Article  PubMed  Google Scholar 

  82. Parikh, N. I. et al. Cardiovascular disease risk factors in chronic kidney disease: overall burden and rates of treatment and control. Arch. Intern. Med. 166, 1884–1891 (2006).

    Article  PubMed  Google Scholar 

  83. McCullough, P. A. et al. Benefits of aspirin and β-blockade after myocardial infarction in patients with chronic kidney disease. Am. Heart J. 144, 226–232 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Berger, A. K., Duval, S. & Krumholz, H. M. Aspirin, β-blocker, and angiotensin-converting enzyme inhibitor therapy in patients with end-stage renal disease and an acute myocardial infarction. J. Am. Coll. Cardiol. 42, 201–208 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Charytan, D. et al. The use of invasive cardiac procedures after acute myocardial infarction in long-term dialysis patients. Am. Heart J. 152, 558–564 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Freeman, R. V. et al. Influence of concurrent renal dysfunction on outcomes of patients with acute coronary syndromes and implications of the use of glycoprotein IIb/IIIa inhibitors. J. Am. Coll. Cardiol 41, 718–724 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Januzzi, J. L., Jr, Snapinn, S. M., DiBattiste, P. M., Jang, I. K. & Theroux, P. Benefits and safety of tirofiban among acute coronary syndrome patients with mild to moderate renal insufficiency: results from the Platelet Receptor Inhibition in Ischemic Syndrome Management in Patients Limited by Unstable Signs and Symptoms (PRISM-PLUS) trial. Circulation 105, 2361–2366 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Best, P. J. et al. The efficacy and safety of short- and long-term dual antiplatelet therapy in patients with mild or moderate chronic kidney disease: results from the Clopidogrel for the Reduction of Events During Observation (CREDO) trial. Am. Heart J. 155, 687–693 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Best, P. J. et al. The impact of renal insufficiency on clinical outcomes in patients undergoing percutaneous coronary interventions. J. Am. Coll. Cardiol. 39, 1113–1119 (2002).

    Article  PubMed  Google Scholar 

  90. Stigant, C., Izadnegahdar, M., Levin, A., Buller, C. E. & Humphries, K. H. Outcomes after percutaneous coronary interventions in patients with CKD: improved outcome in the stenting era. Am. J. Kidney Dis. 45, 1002–1009 (2005).

    Article  PubMed  Google Scholar 

  91. Attallah, N., Yassine, L., Fisher, K. & Yee, J. Risk of bleeding and restenosis among chronic kidney disease patients undergoing percutaneous coronary intervention. Clin. Nephrol. 64, 412–418 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Lemos, P. A. et al. Impact of baseline renal function on mortality after percutaneous coronary intervention with sirolimus-eluting stents or bare metal stents. Am. J. Cardiol. 95, 167–172 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Liu, J. Y. et al. Risks of morbidity and mortality in dialysis patients undergoing coronary artery bypass surgery. Northern New England Cardiovascular Disease Study Group. Circulation 102, 2973–2977 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Ix, J. H. et al. Association of chronic kidney disease with clinical outcomes after coronary revascularization: the Arterial Revascularization Therapies Study (ARTS). Am. Heart J. 149, 512–519 (2005).

    Article  PubMed  Google Scholar 

  95. Gaede, P. et al. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N. Engl. J. Med. 348, 383–393 (2003).

    Article  PubMed  Google Scholar 

  96. KDOQI. KDOQI Clinical Practice Guidelines and Clinical Practice Recommendations for Diabetes and Chronic Kidney Disease. Am. J. Kidney Dis. 49, S12–S154 (2007).

  97. K/DOQI Workgroup. K/DOQI clinical practice guidelines for cardiovascular disease in dialysis patients. Am. J. Kidney Dis. 45, S1–S153 (2005).

  98. Levin, A. et al. Guidelines for the management of chronic kidney disease. CMAJ 179, 1154–1162 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Charytan, D. & Kuntz, R. E. The exclusion of patients with chronic kidney disease from clinical trials in coronary artery disease. Kidney Int. 70, 2021–2030 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Brenner, B. M. et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med. 345, 861–869 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Lewis, E. J. et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N. Engl. J. Med. 345, 851–860 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Breslow, L. H. The Best Pharmaceuticals for Children Act of 2002: the rise of the voluntary incentive structure and congressional refusal to require pediatric testing. Harvard J. Legis. 40, 133–193 (2003).

    PubMed  Google Scholar 

Download references

Acknowledgements

Dr Tonelli was supported by salary awards from the Canadian Institutes of Health Research and the Alberta Heritage Foundation for Medical Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcello Tonelli.

Ethics declarations

Competing interests

M. Tonelli has received grant/research support from Pfizer. D. Rucker declared no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rucker, D., Tonelli, M. Cardiovascular risk and management in chronic kidney disease. Nat Rev Nephrol 5, 287–296 (2009). https://doi.org/10.1038/nrneph.2009.42

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2009.42

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing