Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The nephrotoxic effects of HAART

Abstract

With significant reductions in mortality and risk of progression to AIDS in the era of highly active antiretroviral therapy (HAART), complications of long-standing HIV infection and treatment have become increasingly important. Such complications include the nephrotoxic effects of HAART, which are the subject of this Review. The most common nephrotoxic effects associated with HAART include crystal-induced obstruction secondary to use of protease inhibitors (mainly indinavir and atazanavir), and proximal tubule damage related to the nucleotide analog reverse transcriptase inhibitor tenofovir. Acute kidney injury (AKI) can occur following tenofovir-induced tubule dysfunction or as a result of severe mitochondrial dysfunction and lactic acidosis induced by nucleoside reverse transcriptase inhibitors. The potential insidious long-term renal toxicity of antiretroviral treatment is probably underappreciated in patients with HIV: a proportion of patients with treatment-related AKI did not recover their baseline renal function at 2-year follow-up, suggesting the possibility of permanent renal damage. Finally, nonspecific metabolic complications might increase the risk of vascular chronic kidney disease in patients on HAART. However, given the benefits of HAART, fear of nephrotoxic effects is never a valid reason to withhold antiretroviral therapy. Identification of patients with pre-existing chronic kidney disease, who are at increased risk of renal damage, enables appropriate dose modification, close monitoring, and avoidance or cautious use of potentially nephrotoxic medications.

Key Points

  • HIV suppression by highly active antiretroviral therapy (HAART) is associated with improvements in glomerular filtration rate

  • HAART itself can cause renal toxic effects

  • Identifying and addressing renal risk factors before HAART is initiated could minimize therapy-associated renal toxicity

  • The renal function of patients treated with HAART should be monitored at each medical consultation

  • Fear of possible nephrotoxic effects is not a valid reason to withhold life-saving HAART

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flowchart for diagnosis of renal symptoms in patients on highly active antiretroviral therapy.
Figure 2: Proposed mechanism of tenofovir processing by proximal tubule cells through active tubular secretion in the absence a | or in the presence b | of probenecid and ritonavir.

Similar content being viewed by others

References

  1. Lucas, G. M. et al. End-stage renal disease and chronic kidney disease in a cohort of African-American HIV-infected and at-risk HIV-seronegative participants followed between 1988 and 2004. AIDS 21, 2435–2443 (2007).

    Article  PubMed  Google Scholar 

  2. Krawczyk, C. S., Holmberg, S. D., Moorman, A. C., Gardner, L. I. & McGwin, G. Jr. Factors associated with chronic renal failure in HIV-infected ambulatory patients. AIDS 18, 2171–2178 (2004).

    Article  PubMed  Google Scholar 

  3. Reid, A. et al. Glomerular dysfunction and associated risk factors following initiation of ART in adults with HIV infection in Africa. Presented at the XVI International Conference on AIDS, Toronto, July 2006 [THAB0105].

  4. El-Sadr, W. M. et al. CD4+ count-guided interruption of antiretroviral treatment. N. Engl. J. Med. 355, 2283–2296 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Franceschini, N., Napravnik, S., Eron, J. J. Jr, Szczech, L. A. & Finn, W. F. Incidence and etiology of acute renal failure among ambulatory HIV-infected patients. Kidney Int. 67, 1526–1531 (2005).

    Article  PubMed  Google Scholar 

  6. Wyatt, C. M., Arons, R. R., Klotman, P. E. & Klotman, M. E. Acute renal failure in hospitalized patients with HIV: risk factors and impact on in-hospital mortality. AIDS 20, 561–565 (2006).

    Article  PubMed  Google Scholar 

  7. Roe, J., Campbell, L. J., Ibrahim, F., Hendry, B. M. & Post, F. A. HIV care and the incidence of acute renal failure. Clin. Infect. Dis. 47, 242–249 (2008).

    Article  PubMed  Google Scholar 

  8. Rho, M. & Perazella, M. A. Nephrotoxicity associated with antiretroviral therapy in HIV-infected patients. Curr. Drug Saf. 2, 147–154 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Peraldi, M. N. et al. Acute renal failure in the course of HIV infection: a single-institution retrospective study of ninety-two patients and sixty renal biopsies. Nephrol. Dial. Transplant. 14, 1578–1585 (1999).

    Article  CAS  Google Scholar 

  10. Krishnan, M., Nair, R., Haas, M. & Atta, M. G. Acute renal failure in an HIV-positive 50-year-old man. Am. J. Kidney Dis. 36, 1075–1078 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Angel-Moreno-Maroto, A., Suárez-Castellano, L., Hernández-Cabrera, M. & Pérez-Arellano, J. L. Severe efavirenz-induced hypersensitivity syndrome (not-DRESS) with acute renal failure. J. Infect. 52, e39–e40 (2006).

    Article  PubMed  Google Scholar 

  12. Brewster, U. C. & Perazella, M. A. Acute interstitial nephritis associated with atazanavir, a new protease inhibitor. Am. J. Kidney Dis. 44, e81–e84 (2004).

    Article  PubMed  Google Scholar 

  13. Nelson, M. et al. The safety of tenofovir disoproxil fumarate for the treatment of HIV infection in adults: the first 4 years. AIDS 21, 1273–1281 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Jones, R. et al. Renal dysfunction with tenofovir disoproxil fumarate-containing highly active antiretroviral therapy regimens is not observed more frequently: a cohort and case-control study. J. Acquir. Immune Defic. Syndr. 37, 1489–1495 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Izzedine, H. et al. Renal safety of tenofovir in HIV treatment-experienced patients. AIDS 18, 1074–1076 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Earle, K. E., Seneviratne, T., Shaker, J. & Shoback, D. Fanconi's syndrome in HIV-adults: report of three cases and literature review. J. Bone Miner. Res. 19, 714–721 (2004).

    Article  PubMed  Google Scholar 

  17. Gupta, S. K. Tenofovir-associated Fanconi syndrome: review of the FDA adverse event reporting system. AIDS Patient Care STDS 22, 99–103 (2008).

    Article  PubMed  Google Scholar 

  18. Fux, C. et al. Tenofovir and PI use are associated with an increased prevalence of proximal renal tubular dysfunction in the Swiss HIV Cohort Study. Program and abstracts of the 16th Conference on Retroviruses and Opportunistic Infections; February 8–11, 2009; Montréal, Canada. Abstract 743.

  19. Fine, D. et al. Assessment of renal findings of abacavir/lamivudine compared with tenofovir/emtricitabine in combination with once-daily lopinavir/ritonavir over 96 weeks in the HEAT study. Program and abstracts of the 16th Conference on Retroviruses and Opportunistic Infections; February 8–11, 2009; Montréal, Canada. Abstract 744.

  20. Labarga, P. et al. Kidney tubular abnormalities in the absence of impaired glomerular function in HIV patients treated with tenofovir. AIDS 23, 689–696 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Gatanaga, H. et al. Urinary β2-microglobulin as a possible sensitive marker for renal injury caused by tenofovir disoproxil fumarate. AIDS Res. Hum. Retroviruses 22, 744–748 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Zimmermann, A. E. et al. Tenofovir-associated acute and chronic kidney disease: a case of multiple drug interactions. Clin. Infect. Dis. 42, 283–290 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Harris, M. Nephrotoxicity associated with antiretroviral therapy in HIV-infected patients. Expert Opin. Drug Saf. 7, 389–400 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Gallant, J. E., Parish, M. A., Keruly, J. C. & Moore, R. D. Changes in renal function associated with tenofovir disoproxil fumarate treatment, compared with nucleoside reverse-transcriptase inhibitor treatment. Clin. Infect. Dis. 40, 1194–1198 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Gallant, J. E. et al. Tenofovir DF, emtricitabine, and efavirenz vs. zidovudine, lamivudine, and efavirenz for HIV. N. Engl. J. Med. 354, 251–260 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Breton, G. et al. Tubulopathy consecutive to tenofovir-containing antiretroviral therapy in two patients infected with HIV-1. Scand. J. Infect. Dis. 36, 527–528 (2004).

    Article  PubMed  Google Scholar 

  27. Young, B. et al. HIV Outpatient Study Investigators. Renal function in tenofovir exposed and tenofovir-unexposed patients receiving highly active antiretroviral therapy in the HIV Outpatient Study. J. Int. Assoc. Physicians AIDS Care (Chic Ill) 6, 178–187 (2007).

    Article  Google Scholar 

  28. Short, W., Solari, P. & Kaplan, B. Comparison of renal function in a cohort of patients on tenofovir (TDF) versus non-tenofovir containing regimens. Program and abstracts of the 17th International AIDS Conference; August 3–8, 2008; Mexico City, Mexico. Abstract THPE0202.

  29. Rawlings, M. K. et al. Impact of drug therapy and co-morbidities on the development of renal impairment in HIV-infected patients: results of a large retrospective database study. Program and abstracts of the 17th International AIDS Conference; August 3–8, 2008; Mexico City, Mexico. Abstract THPE0182.

  30. Guaraldi, G. et al. Glomerular filtration rates in HIV-infected patients treated with and without tenofovir: a prospective, observational study. J. Antimicrob. Chemother. 63, 374–379 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Moreno, S. et al. Recover Study Group. Renal safety of tenofovir disoproxil fumarate in HIV-1 treatment-experienced patients with adverse events related to prior NRTI use: data from a prospective, observational, multicenter study. J. Acquir. Immune Defic. Syndr. 42, 385–387 (2006).

    Article  PubMed  Google Scholar 

  32. Winston, A. et al. Minor changes in calculated creatinine clearance and anion-gap are associated with tenofovir disoproxil fumarate–containing highly active antiretroviral therapy. HIV Med. 7, 105–111 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Izzedine, H., Launay-Vacher, V. & Deray, G. Fanconi syndrome associated with didanosine therapy. AIDS 19, 844–845 (2005).

    Article  PubMed  Google Scholar 

  34. Morris, A. A., Baudouin, S. V. & Snow, M. H. Renal tubular acidosis and hypophosphataemia after treatment with nucleoside reverse transcriptase inhibitors. AIDS 15, 140–141 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Ahmad, M. Abacavir-induced reversible Fanconi syndrome with nephrogenic diabetes insipidus in a patient with acquired immunodeficiency syndrome. J. Postgrad. 52, 296–297 (2006).

  36. Seguro, A. C. et al. Effects of hypokalemia and hypomagnesemia on zidovudine (AZT) and didanosine (ddI) nephrotoxicity in rats. Clin. Nephrol. 59, 267–272 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Bonnet, F. et al. for the Groupe d'Epidemiologie Clinique du SIDA en Aquitaine. Risk factors for hyperlactataemia in HIV-infected patients, Aquitaine Cohort, 1999–2003. Antivir. Chem. Chemother. 16, 63–67 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Murphy, M. D., O'Hearn, M. & Chou, S. Fatal lactic acidosis and acute renal failure after addition of tenofovir to an antiretroviral regimen containing didanosine. Clin. Infect. Dis. 36, 1082–1085 (2003).

    Article  PubMed  Google Scholar 

  39. Joshi, M. K. & Liu, H. H. Acute rhabdomyolysis and renal failure in HIV-infected patients: risk factors, presentation, and pathophysiology. AIDS Patient Care STDs 14, 541–548 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Corsini, A. The safety of HMG-CoA reductase inhibitors in special populations at high cardiovascular risk. Cardiovasc. Drugs Ther. 17, 265–285 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Izzedine, H. et al. Efavirenz urolithiasis. AIDS 21, 1992 (2007).

    Article  PubMed  Google Scholar 

  42. Chan-Tack, K. M., Truffa, M. M., Struble, K. A. & Birnkrant, D. B. Atazanavir-associated nephrolithiasis: cases from the US Food and Drug Administration's Adverse Event Reporting System. AIDS 21, 1215–1218 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Couzigou, C. et al. Urolithiasis in HIV-positive patients treated with atazanavir. Clin. Infect. Dis. 45, e105–e108 (2007).

    Article  CAS  Google Scholar 

  44. Marroni, M., Gaburri, M., Mecozzi, F. & Baldelli, F. Acute interstitial nephritis secondary to the administration of indinavir. Ann. Pharmacother. 32, 843–834 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Izzedine, H., M'rad, M. B., Bardier, A., Daudon, M. & Salmon, D. Atazanavir crystal nephropathy. AIDS 21, 2357–2358 (2007).

    Article  PubMed  Google Scholar 

  46. Green, S. T., McKendrick, M. W., Schmid, M. L., Mohsen, A. H. & Prakasam, S. F. Renal calculi developing de novo in a patient taking saquinavir. Int. J. STD AIDS 9, 555 (1998).

    Article  CAS  Google Scholar 

  47. Engeler, D. S. et al. Nelfinavir urinary stones. J. Urol. 167, 1384–1385 (2002).

    Article  PubMed  Google Scholar 

  48. Doco-Lecompte, T. et al. Lopinavir-ritonavir (Kaletra) and lithiasis: seven cases. AIDS 18, 705–706 (2004).

    Article  PubMed  Google Scholar 

  49. Hanabusa, H., Tagami, H. & Hataya, H. Renal atrophy associated with long-term treatment with indinavir. N. Engl. J. Med. 340, 392–393 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Cattelan, A. M., Trevenzoli, M., Naso, A., Meneghetti, F. & Cadrobbi, P. Severe hypertension and renal atrophy associated with indinavir. Clin. Infect. Dis. 30, 619–621 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Friis-Moller, N. et al. Cardiovascular disease risk factors in HIV patients--association with antiretroviral therapy: results from the DAD study. AIDS 17, 1179–1193 (2003).

    Article  PubMed  Google Scholar 

  52. Crane, H. M., Van Rompaey, S. E. & Kitahata, M. M. Antiretroviral medications associated with elevated blood pressure among patients receiving highly active antiretroviral therapy. AIDS 20, 1019–1026 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Koster, J. C., Remedi, M. S., Qiu, H., Nichols, C. G. & Hruz, P. W. HIV protease inhibitors acutely impair glucose-stimulated insulin release. Diabetes 52, 1695–1700 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Brown, T. T. et al. Antiretroviral therapy and the prevalence and incidence of diabetes mellitus in the multicenter AIDS cohort study. Arch. Intern. Med. 165, 1179–1184 (2005).

    Article  PubMed  Google Scholar 

  55. Palacios, R. et al. Impact of highly active antiretroviral therapy on blood pressure in HIV-infected patients. A prospective study in a cohort of naive patients. HIV Med. 7, 10–15 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Boffa, J. J. Sténose athéromateuse de l'artère rénale chez le jeune patient VIH. Nephrol. Ther. 5, 303 (2007).

    Google Scholar 

  57. Gupta, S. K. et al. Guidelines for the management of chronic kidney disease in HIV-infected patients: recommendations of the HIV Medicine Association of the Infectious Diseases Society of America. Clin. Infect. Dis. 40, 1559–1585 (2005).

    Article  PubMed  Google Scholar 

  58. Ciarimboli, G. et al. Individual PKC-phosphorylation sites in organic cation transporter 1 determine substrate selectivity and transport regulation. J. Am. Soc. Nephrol. 16, 1562–1570 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Izzedine, H. et al. Association between ABCC2 gene haplotypes and tenofovir-induced proximal tubulopathy. J. Infect. Dis. 194, 1481–1491 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Kiser, J. J. et al. The effect of lopinavir/ritonavir on the renal clearance of tenofovir in HIV-infected patients. Clin. Pharmacol. Ther. 83, 265–272 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Perazella, M. A. Crystal-induced acute renal failure. Am. J. Med. 106, 459–465 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Rockstroh, J. Current issues in viral hepatitis co-infection with HIV. Program and abstracts of the 9th International Congress on Drug Therapy in HIV Infection; November 9–13, 2008; Glasgow, United Kingdom. Case discussion CS2.3.

  63. Intelence full prescribing information. Tibotec Inc. Raritan USA (2008).

  64. Aptivus® product information. Boehringer Ingelheim International GmbH (2007).

  65. Prezista® prescribing information. Tibotec Inc., Raritan, USA (2008).

  66. Fuzeon prduct information. Roche Laboratories, Inc., Nutley USA and Trimeris, Inc., Morrisville, USA (2007).

  67. Tebas, P. et al. Enfuvirtide does not require dose adjustment in patients with chronic kidney failure: results of a pharmacokinetic study of enfuvirtide in HIV-1-infected patients with impaired kidney function. J. Acquir. Immune Defic. Syndr. 47, 342–345 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Isentress prescribing information. Merck & Co. Inc., Whitehouse Station, NJ (2008).

  69. Selzentry prescribing information. Pfizer Inc., New York, USA (2007).

  70. Bristol-Myers-Squibb. Atazanavir (Reyataz) Capsules: Prescribing Information (Bristol-Myers Squibb Company, Princeton, NJ, 2007).

  71. Tibotec, T. Darunavir (Prezista) Tablets: Prescribing Information (Tibotec, Inc., Bridgewater, NJ, 2007). Clin. Infect. Dis. 40, 1194–1198 (2005).

    Article  Google Scholar 

  72. Crane, H. M., Kestenbaum, B., Harrington, R. D. & Kitahata, M. M. Amprenavir and didanosine are associated with declining kidney function among patients receiving tenofovir. AIDS 21, 1431–1439 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Johnson, M. et al. 96-Week comparison of once-daily atazanavir/ritonavir and twice-daily lopinavir/ritonavir in patients with multiple virologic failures. AIDS 20, 711–718 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Johnson, M. A. et al. A once-daily lopinavir/ ritonavir–based regimen provides non inferior antiviral activity compared with a twice-daily regimen. J. Acquir. Immune Defic. Syndr. 43, 153–160 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Smith, K. Y. et al. Fosamprenavir or atazanavir once daily boosted with ritonavir 100 mg, plus tenofovir/emtricitabine, for the initial treatment of HIV infection: 48-week results of ALERT. ALERT (COL103952) Study Team. AIDS Res. Ther. 5, 5 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Molina, J. M. et al. Once-daily atazanavir/ritonavir versus twice-daily lopinavir/ritonavir, each in combination with tenofovir and emtricitabine, for management of antiretroviral-naive HIV-1-infected patients: 48 week efficacy and safety results of the CASTLE study. Lancet 372, 646–655 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Buchacz, K. et al. Renal function in patients receiving tenofovir with ritonavir/lopinavir or ritonavir/atazanavir in the HIV Outpatient Study (HOPS) cohort. J. Acquir. Immune Defic. Syndr. 43, 626–628 (2006).

    Article  PubMed  Google Scholar 

  78. Fichtenbaum, C. J. et al. Pharmacokinetic interactions between protease inhibitors and statins in HIV seronegative volunteers: ACTG Study A5047. AIDS 16, 569–577 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Schmidt, G. A., Hoehns, J. D., Purcell, J. L., Friedman, R. L. & Elhawi, Y. Severe rhabdomyolysis and acute renal failure secondary to concomitant use of simvastatin, amiodarone, and atazanavir. J. Am. Board. Fam. Med. 20, 411–416 (2007).

    Article  PubMed  Google Scholar 

  80. Palacios, R. et al. Efficacy and safety of atorvastatin in the treatment of hypercholesterolemia associated with antiretroviral therapy. J. Acquir. Immune Defic. Syndr. 30, 536–537 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Mallon, P. W. et al. Effect of pravastatin on body composition and markers of cardiovascular disease in HIV-infected men--a randomized, placebo-controlled study. AIDS 20, 1003–1010 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Bonnet, F. et al. Pravastatin in HIV-infected patients treated with protease inhibitors: a placebo-controlled randomized study. HIV Clin. Trials 8, 53–60 (2007).

    Article  PubMed  Google Scholar 

  83. Calza, L. et al. Rosuvastatin for the treatment of hyperlipidaemia in HIV-infected patients receiving protease inhibitors: a pilot study. AIDS 19, 1103–1105 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Back, D. J. Drug–drug interactions that matter. Top HIV Med. 14, 88–92 (2006).

    PubMed  Google Scholar 

  85. Sekar, V. J. et al. Pharmacokinetic drug-drug interaction between the new HIV protease inhibitor darunavir (tmC114) and the lipid-lowering agent pravastatin [abstract 54]. 8th international Workshop on clinical Pharmacology of HIV Therapy; 16–18 April 2007; Budapest, Hungary.

  86. Pham, P. A. et al. Pharmacokinetic interaction between tipranavir/Ritonavir and rosuvastatin [abstract 767]. 15th conference on retrovirus and opportunistic infections; 3–6 February 2008, Boston, USA.

  87. Liverpool HIV pharmacology Group. Drug Interactions Chart [online].

  88. Glesby, M. J. & Stein, J. H. Managing dyslipidemia in HIV-infected patients on therapy Clinical Care Options HIV [online], (2008).

    Google Scholar 

  89. Reilly, R. F., Tray, K. & Perazella, M. A. Indinavir nephropathy revisited: a pattern of insidious renal failure with identifiable risk factors. Am. J. Kidney Dis. 38, E23 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Reid, G. et al. Characterization of the transport of nucleoside analog drugs by the human multidrug resistance proteins MRP4 and MRP5. Mol. Pharmacol. 63, 1094–1103 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Cihlar, T. et al. Molecular assessment of the potential for renal drug interactions between tenofovir and HIV protease inhibitors. Antivir. Ther. 12, 267–272 (2007).

    CAS  PubMed  Google Scholar 

  92. Lacy, S. A., Hitchcock, M. J., Lee, W. A., Tellier, P. & Cundy, K. C. Effect of oral probenecid coadministration on the chronic toxicity and pharmacokinetics of intravenous cidofovir in cynomolgus monkeys. Toxicol. Sci. 44, 97–106 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Uwai, Y., Ida, H., Tsuji, Y., Katsura, T. & Inui, K. Renal transport of adefovir, cidofovir, and tenofovir by SLC22A family members (hOAT1, hOAT3, and hOCT2). Pharm. Res. 24, 811–815 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Green, S. T., McKendrick, M. W., Schmid, M. L., Mohsen, A. H. & Prakasam, S. F. Renal calculi developing de novo in a patient taking saquinavir. Int. J. STD AIDS 9, 555 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Viread® product information. Gilead Sciences Inc., Foster City, USA (2007).

  96. Libório, A. B. et al. Rosiglitazone reverses tenofovir-induced nephrotoxicity. Kidney Int. 74, 910–918 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Song, J., Knepper, M. A., Hu, X., Verbalis, J. G. & Ecelbarger, C. A. Rosiglitazone activates renal sodium and water-reabsorptive pathways and lowers blood pressure in normal rats. J. Pharmacol. Exp. Ther. 308, 426–433 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Reyataz [package insert]. Princeton, New Jersey: Bristol-Myers Squibb Company (2004).

  99. Norvir [package insert]. North Chicago, Illinois: Abbott Laboratories (2003).

  100. Squires, K. et al. Tenofovir disoproxil fumarate in nucleoside-resistant HIV-1 infection: a randomized trial. Ann. Intern. Med. 139, 313–320 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Ray, A. S. et al. Mechanism of active renal tubular efflux of tenofovir. Antimicrob. Agents Chemother. 50, 3297–3304 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mallants, R. et al. Multidrug resistance-associated protein 2 (MRP2) affects hepatobiliary elimination but not the intestinal disposition of tenofovir disoproxil fumarate and its metabolites. Xenobiotica 35, 1055–1066 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Imaoka, T. et al. Functional involvement of multidrug resistance associated protein 4 (MRP4/ABCC4) in the renal elimination of the anti-viral drugs, adefovir and tenofovir. Mol. Pharmacol. 71, 619–627 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Fine, D. Renal disease and toxicities: issues for HIV care providers. Top HIV Med. 14, 164–169 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Perazella.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Izzedine, H., Harris, M. & Perazella, M. The nephrotoxic effects of HAART. Nat Rev Nephrol 5, 563–573 (2009). https://doi.org/10.1038/nrneph.2009.142

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2009.142

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing