Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Neural correlates of consciousness in humans

Key Points

  • The primate visual system is the best-characterized sensory system and has therefore been used as a model in which to study the neural correlates of visual consciousness. Electrophysiological studies in monkeys and functional neuroimaging studies in humans can be used to address this issue. To identify the neural correlates of conscious experience (as opposed to simply being conscious), it is necessary to dissociate the neural activity that correlates with a single conscious experience from activity that reflects unconscious perception or action associated with that experience.

  • Activity in primary visual cortex (V1) is necessary for conscious perception of a visual stimulus. However, some of the information represented in V1 (such as which eye a stimulus is presented to) is not available to consciousness, and activity in V1 does not always correlate with conscious experience. The current evidence supports the idea that activity in V1 is necessary but not sufficient for conscious perception.

  • Activity in areas of extrastriate visual cortex correlates more closely with visual perception, and damage to these areas can selectively impair the ability to perceive particular features of stimuli. But there is also some evidence that the correlation between activity in extrastriate cortex and conscious experience is not perfect.

  • It is possible that the timing or synchronization of neural activity, rather than simply the overall level of spiking, might correlate with or mediate awareness. Although there is some evidence to support this theory, it has not been possible to show in primates that disrupting synchrony of firing causes any perceptual impairment. The evidence that addresses these ideas is preliminary.

  • Recent neuroimaging studies have indicated that activity in areas of parietal and prefrontal cortex might also be associated with visual awareness. The authors suggest that activity in extrastriate visual cortex might require an additional contribution from these areas to mediate awareness. Neuropsychological evidence from patients with damage to the parietal or prefrontal cortices, in whom disturbances of visual attention and visual awareness can occur, supports this theory, although in these patients awareness is disturbed but not eliminated.

  • A better understanding of the neural correlates of consciousness in specialized areas of extrastriate visual cortex will help us to understand awareness. Another important area for study will be the interactions between ventral and dorsal areas.


The directness and vivid quality of conscious experience belies the complexity of the underlying neural mechanisms, which remain incompletely understood. Recent work has focused on identifying the brain structures and patterns of neural activity within the primate visual system that are correlated with the content of visual consciousness. Functional neuroimaging in humans and electrophysiology in awake mokeys indicate that there are important differences between striate and extrastriate visual cortex in how well neural activity correlates with consciousness. Moreover, recent neuroimaging studies indicate that, in addition to these ventral areas of visual cortex, dorsal prefrontal and parietal areas might contribute to conscious visual experience.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Activity in V1 does not correlate with awareness.
Figure 2: Anatomical hierarchy of visual areas in human and non-human primate.
Figure 3: Single-neuron activity in human temporal cortex correlates with awareness.
Figure 4: Neural correlates of awareness during binocular rivalry.
Figure 5: Parietal and prefrontal correlates of consciousness.


  1. 1

    Crick, F. & Koch, C. Some reflections on visual awareness. Cold Spring Harb. Symp. Quant. Biol. 55, 953–962 (1990).

    CAS  PubMed  Google Scholar 

  2. 2

    Schiff, N. D. & Plum, F. The role of arousal and 'gating' systems in the neurology of impaired consciousness. J. Clin. Neurophysiol. 17, 438–452 (2000).

    CAS  PubMed  Google Scholar 

  3. 3

    Driver, J. & Mattingley, J. B. Parietal neglect and visual awareness. Nature Neurosci. 1, 17–22 (1998).

    CAS  PubMed  Google Scholar 

  4. 4

    Marcel, A. J. Conscious and unconscious perception: experiments on visual masking and word recognition. Cogn. Psychol. 15, 197–237 (1983).

    CAS  PubMed  Google Scholar 

  5. 5

    Frith, C. D., Perry, R. & Lumer, E. The neural correlates of conscious experience: an experimental framework. Trends Cogn. Sci. 3, 105–114 (1999).

    CAS  Google Scholar 

  6. 6

    Chalmers, D. J. The Conscious Mind: In Search of a Fundamental Theory (Oxford Univ. Press, Oxford, 1996).

    Google Scholar 

  7. 7

    Metzinger, T. (ed.) Conscious Experience Imprint Academic, Thorverton, UK, 1999).

    Google Scholar 

  8. 8

    Block, N., Flanagan, O. & Güzeldere, G. (eds) The Nature of Consciousness (MIT Press, Cambridge, Massachusetts, 1996).

    Google Scholar 

  9. 9

    Crick, F. & Koch, C. Consciousness and neuroscience. Cereb. Cortex 8, 97–107 (1998).

    CAS  PubMed  Google Scholar 

  10. 10

    Metzinger, T. (ed.) Neural Correlates of Consciousness: Empirical and Conceptual Questions (MIT Press, Cambridge, Massachusetts, 2000).A collection of expert views on conceptual and empirical aspects of contemporary consciousness studies, with an important focus on bringing together different areas of inquiry.

    Google Scholar 

  11. 11

    Sahraie, A. et al. Pattern of neuronal activity associated with conscious and unconscious processing of visual signals. Proc. Natl Acad. Sci. USA 94, 9406–9411 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Weiskrantz, L. Blindsight: a Case Study and its Implications (Oxford Univ. Press, Oxford, 1986).

    Google Scholar 

  13. 13

    Crick, F. & Koch, C. Are we aware of neural activity in primary visual cortex? Nature 375, 121–123 (1995).An influential paper that provided one of the first concrete, empirically testable hypotheses about the location of the neural correlates of consciousness.

    CAS  Google Scholar 

  14. 14

    Miller, E. K. The prefrontal cortex and cognitive control. Nature Rev. Neurosci. 1, 59–65 (2000).

    CAS  Google Scholar 

  15. 15

    Blake, R. & Cormack, R. On utrocular discrimination. Percept. Psychophys. 26, 53–68 (1979).

    Google Scholar 

  16. 16

    He, S., Cavanagh, P. & Intriligator, J. Attentional resolution and the locus of visual awareness. Nature 383, 334–337 (1996).

    CAS  Google Scholar 

  17. 17

    He, S. & MacLeod, D. I. Orientation-selective adaptation and tilt after-effect from invisible patterns. Nature 411, 473–476 (2001).Demonstration of the conscious aftereffect of invisible patterns, using a particularly clear and simple paradigm.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Blake, R. & Fox, R. Binocular rivalry suppression: insensitive to spatial frequency and orientation change. Vision Res. 14, 687–692 (1974).

    CAS  PubMed  Google Scholar 

  19. 19

    Cumming, B. G. & Parker, A. J. Responses of primary visual cortical neurons to binocular disparity without depth perception. Nature 389, 280–283 (1997).

    CAS  PubMed  Google Scholar 

  20. 20

    Gawne, T. J. & Martin, J. M. Activity of primate V1 cortical neurons during blinks. J. Neurophysiol. 84, 2691–2694 (2000).

    CAS  PubMed  Google Scholar 

  21. 21

    Martinez-Conde, S., Macknik, S. L. & Hubel, D. H. Microsaccadic eye movements and firing of single cells in the striate cortex of macaque monkeys. Nature Neurosci. 3, 251–258 (2000).

    CAS  PubMed  Google Scholar 

  22. 22

    Gur, M. & Snodderly, D. M. A dissociation between brain activity and perception: chromatically opponent cortical neurons signal chromatic flicker that is not perceived. Vision Res. 37, 377–382 (1997).

    CAS  Google Scholar 

  23. 23

    Blake, R. & Logothetis, N. K. Visual competition. Nature Rev. Neurosci. 3, 13–23 (2002).

    CAS  Google Scholar 

  24. 24

    Myserson, J., Miezin, F. M. & Allman, J. M. Binocular rivalry in macaque monkeys and humans: a comparative study in perception. Behav. Anal. Lett. 1, 149–159 (1981).

    Google Scholar 

  25. 25

    Sheinberg, D. L. & Logothetis, N. K. The role of temporal cortical areas in perceptual organization. Proc. Natl Acad. Sci. USA 94, 3408–3413 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Polonsky, A., Blake, R., Braun, J. & Heeger, D. J. Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry. Nature Neurosci. 3, 1153–1159 (2000).

    CAS  PubMed  Google Scholar 

  27. 27

    Tong, F. & Engel, S. A. Interocular rivalry revealed in the human cortical blind-spot representation. Nature 411, 195–199 (2001).

    CAS  Google Scholar 

  28. 28

    Rees, G. et al. Neural correlates of conscious and unconscious vision in parietal extinction. Neurocase (in the press).

  29. 29

    Vuilleumier, P. et al. The neural fate of seen and unseen faces in visuospatial neglect: a combined event-related fMRI and ERP study of visual extinction. Proc. Natl Acad. Sci. USA 98, 3495–3500 (2001).

    CAS  PubMed  Google Scholar 

  30. 30

    Felleman, D. J. & Van Essen, D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).

    CAS  Google Scholar 

  31. 31

    Rees, G. et al. Unconscious activation of visual cortex in the damaged right hemisphere of a parietal patient with extinction. Brain 123, 1624–1633 (2000).The first in a series of papers studying the neural correlates of conscious and unconscious perception in parietal extinction. See also references 28 and 29.

    Google Scholar 

  32. 32

    Zihl, J., von Cramon, D. & Mai, N. Selective disturbance of movement vision after bilateral brain damage. Brain 106, 313–340 (1983).

    PubMed  Google Scholar 

  33. 33

    Beauchamp, M. S., Haxby, J. V., Jennings, J. E. & DeYoe, E. A. An fMRI version of the Farnsworth-Munsell 100-hue test reveals multiple color-selective areas in human ventral occipitotemporal cortex. Cereb. Cortex 9, 257–263 (1999).

    CAS  PubMed  Google Scholar 

  34. 34

    Meadows, J. C. Disturbed perception of colours associated with localized cerebral lesions. Brain 97, 615–632 (1974).

    CAS  PubMed  Google Scholar 

  35. 35

    Kanwisher, N., McDermott, J. & Chun, M. M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997).

    CAS  Google Scholar 

  36. 36

    Puce, A., Allison, T., Gore, J. C. & McCarthy, G. Face-sensitive regions in human extrastriate cortex studied by functional MRI. J. Neurophysiol. 74, 1192–1199 (1995).

    CAS  Google Scholar 

  37. 37

    Damasio, A. R., Damasio, H. & Van Hoesen, G. W. Prosopagnosia: anatomic basis and behavioral mechanisms. Neurology 32, 331–341 (1982).

    CAS  PubMed  Google Scholar 

  38. 38

    Zeki, S. Parallel processing, asynchronous perception, and a distributed system of consciousness in vision. Neuroscientist 4, 365–372 (1998).

    Google Scholar 

  39. 39

    Silbersweig, D. A. et al. A functional neuroanatomy of hallucinations in schizophrenia. Nature 378, 176–179 (1995).

    CAS  PubMed  Google Scholar 

  40. 40

    ffytche, D. H. et al. The anatomy of conscious vision: an fMRI study of visual hallucinations. Nature Neurosci. 1, 738–742 (1998).

    CAS  Google Scholar 

  41. 41

    Barnes, J. et al. The functional anatomy of the McCollough contingent colour after-effect. Neuroreport 10, 195–199 (1999).

    CAS  PubMed  Google Scholar 

  42. 42

    Hadjikhani, N., Liu, A. K., Dale, A. M., Cavanagh, P. & Tootell, R. B. Retinotopy and color sensitivity in human visual cortical area V8. Nature Neurosci. 1, 235–241 (1998).

    CAS  PubMed  Google Scholar 

  43. 43

    Sakai, K. et al. Functional mapping of the human colour centre with echo-planar magnetic resonance imaging. Proc. R. Soc. Lond. B 261, 89–98 (1995).

    CAS  Google Scholar 

  44. 44

    Culham, J. C. et al. Recovery of fMRI activation in motion area MT following storage of the motion aftereffect. J. Neurophysiol. 81, 388–393 (1999).

    CAS  PubMed  Google Scholar 

  45. 45

    He, S., Cohen, E. R. & Hu, X. Close correlation between activity in brain area MT/V5 and the perception of a visual motion aftereffect. Curr. Biol. 8, 1215–1218 (1998).

    CAS  PubMed  Google Scholar 

  46. 46

    Tootell, R. B. et al. Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging. Nature 375, 139–141 (1995).

    CAS  Google Scholar 

  47. 47

    Zeki, S., Watson, J. D. & Frackowiak, R. S. Going beyond the information given: the relation of illusory visual motion to brain activity. Proc. R. Soc. Lond. B 252, 215–222 (1993).

    CAS  Google Scholar 

  48. 48

    Kourtzi, Z. & Kanwisher, N. Activation in human MT/MST by static images with implied motion. J. Cogn. Neurosci. 12, 48–55 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    ffytche, D. H. & Zeki, S. Brain activity related to the perception of illusory contours. Neuroimage 3, 104–108 (1996).

    CAS  PubMed  Google Scholar 

  50. 50

    Hirsch, J. et al. Illusory contours activate specific regions in human visual cortex: evidence from functional magnetic resonance imaging. Proc. Natl Acad. Sci. USA 92, 6469–6473 (1995).

    CAS  PubMed  Google Scholar 

  51. 51

    Mendola, J. D., Dale, A. M., Fischl, B., Liu, A. K. & Tootell, R. B. The representation of illusory and real contours in human cortical visual areas revealed by functional magnetic resonance imaging. J. Neurosci. 19, 8560–8572 (1999).

    CAS  PubMed  Google Scholar 

  52. 52

    Rees, G., Russell, C., Frith, C. D. & Driver, J. Inattentional blindness versus inattentional amnesia for fixated but ignored words. Science 286, 2504–2507 (1999).

    CAS  Google Scholar 

  53. 53

    Wolfe, J. Reversing ocular dominance and suppression in a single flash. Vision Res. 24, 471–478 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Leopold, D. A. & Logothetis, N. K. Activity changes in early visual cortex reflect monkeys' percepts during binocular rivalry. Nature 379, 549–553 (1996).Widely cited classic studies (see also reference 25 ) of the correlation between single-neuron activity in visual cortex and perceptual awareness in monkeys; the results show increasing correlation between neural activity and perception from early visual cortex to later ventral temporal visual areas.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Lumer, E. in Neural Correlates of Consciousness: Conceptual and Empirical Questions (ed. Metzinger, T.) 231–240 (MIT Press, Boston, Massachusetts, 2000).

    Google Scholar 

  56. 56

    Tong, F., Nakayama, K., Vaughan, J. T. & Kanwisher, N. Binocular rivalry and visual awareness in human extrastriate cortex. Neuron 21, 753–759 (1998).

    CAS  Google Scholar 

  57. 57

    Kreiman, G., Koch, C. & Fried, I. Category-specific visual responses of single neurons in the human medial temporal lobe. Nature Neurosci. 3, 946–953 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Kreiman, G., Fried, I. & Koch, C. Single neuron responses in humans during binocular rivalry and flash suppression. Soc. Neurosci. Abstr. 27, 348.3 (2001).

    Google Scholar 

  59. 59

    Kreiman, G., Koch, C. & Fried, I. Imagery neurons in the human brain. Nature 408, 357–361 (2000).

    CAS  Google Scholar 

  60. 60

    O'Craven, K. M. & Kanwisher, N. Mental imagery of faces and places activates corresponding stimulus-specific brain regions. J. Cogn. Neurosci. 12, 1013–1023 (2000).

    CAS  PubMed  Google Scholar 

  61. 61

    Kosslyn, S. M., Ganis, G. & Thompson, W. L. Neural foundations of imagery. Nature Rev. Neurosci. 2, 635–642 (2001).

    CAS  Google Scholar 

  62. 62

    Goebel, R., Stoerig, P., Muckli, L., Zanella, F. E. & Singer, W. Ipsilesional visual activation in ventral extrastriate cortex in patients with blindsight. Soc. Neurosci. Abstr. 24, 1508 (1998).

    Google Scholar 

  63. 63

    Goebel, R., Muckli, L., Zanella, F. E., Singer, W. & Stoerig, P. Sustained extrastriate cortical activation without visual awareness revealed by fMRI studies of hemianopic patients. Vision Res. 41, 1459–1474 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Dehaene, S. et al. Cerebral mechanisms of word masking and unconscious repetition priming. Nature Neurosci. 4, 752–758 (2001).

    CAS  PubMed  Google Scholar 

  65. 65

    Nobre, A. C., Allison, T. & McCarthy, G. Word recognition in the human inferior temporal lobe. Nature 372, 260–263 (1994).

    CAS  PubMed  Google Scholar 

  66. 66

    Luck, S. J., Vogel, E. K. & Shapiro, K. L. Word meanings can be accessed but not reported during the attentional blink. Nature 383, 616–618 (1996).

    CAS  Google Scholar 

  67. 67

    Grill-Spector, K., Kushnir, T., Hendler, T. & Malach, R. The dynamics of object-selective activation correlate with recognition performance in humans. Nature Neurosci. 3, 837–843 (2000).

    CAS  PubMed  Google Scholar 

  68. 68

    Barlow, J. S. The Electroencephalogram: its Patterns and Origins (MIT Press, Cambridge, Massachusetts, 1993).

    Google Scholar 

  69. 69

    Singer, W. & Gray, C. M. Visual feature integration and the temporal correlation hypothesis. Annu. Rev. Neurosci. 18, 555–586 (1995).

    CAS  Google Scholar 

  70. 70

    Engel, A. K. & Singer, W. Temporal binding and the neural correlates of sensory awareness. Trends Cogn. Sci. 5, 16–25 (2001).

    Google Scholar 

  71. 71

    Shadlen, M. N. & Movshon, J. A. Synchrony unbound: a critical evaluation of the temporal binding hypothesis. Neuron 24, 67–77; 111–125 (1999). | PubMed |

    CAS  Google Scholar 

  72. 72

    Rees, G. & Lavie, N. What can functional imaging reveal about the role of attention in visual awareness? Neuropsychologia 39, 1343–1353 (2001).

    CAS  PubMed  Google Scholar 

  73. 73

    Fries, P., Reynolds, J. H., Rorie, A. E. & Desimone, R. Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291, 1560–1563 (2001).

    CAS  Google Scholar 

  74. 74

    Steinmetz, P. N. et al. Attention modulates synchronized neuronal firing in primate somatosensory cortex. Nature 404, 187–190 (2000).A particularly clear demonstration of how selective attention modulates synchronous neuronal firing.

    CAS  Google Scholar 

  75. 75

    Fries, P., Roelfsema, P. R., Engel, A. K., Konig, P. & Singer, W. Synchronization of oscillatory responses in visual cortex correlates with perception in interocular rivalry. Proc. Natl Acad. Sci. USA 94, 12699–12704 (1997).

    CAS  PubMed  Google Scholar 

  76. 76

    Tononi, G., Srinivasan, R., Russell, D. P. & Edelman, G. M. Investigating neural correlates of conscious perception by frequency-tagged neuromagnetic responses. Proc. Natl Acad. Sci. USA 95, 3198–3203 (1998).

    CAS  PubMed  Google Scholar 

  77. 77

    Rodriguez, E. et al. Perception's shadow: long-distance synchronization of human brain activity. Nature 397, 430–433 (1999).

    CAS  Google Scholar 

  78. 78

    Stopfer, M., Bhagavan, S., Smith, B. H. & Laurent, G. Impaired odour discrimination on desynchronization of odour-encoding neural assemblies. Nature 390, 70–74 (1997).

    CAS  Google Scholar 

  79. 79

    Ringach, D. L., Hawken, M. J. & Shapley, R. Dynamics of orientation tuning in macaque primary visual cortex. Nature 387, 281–284 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Sugase, Y., Yamane, S., Ueno, S. & Kawano, K. Global and fine information coded by single neurons in the temporal visual cortex. Nature 400, 869–873 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Kapadia, M. K., Ito, M., Gilbert, C. D. & Westheimer, G. Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys. Neuron 15, 843–856 (1995).

    CAS  Google Scholar 

  82. 82

    Lamme, V. A. & Roelfsema, P. R. The distinct modes of vision offered by feedforward and recurrent processing. Trends Neurosci. 23, 571–579 (2000).

    CAS  Google Scholar 

  83. 83

    Pollen, D. A. On the neural correlates of visual perception. Cereb. Cortex 9, 4–19 (1999).

    CAS  Google Scholar 

  84. 84

    Pascual-Leone, A. & Walsh, V. Fast backprojections from the motion to the primary visual area necessary for visual awareness. Science 292, 510–512 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Lumer, E. D., Friston, K. J. & Rees, G. Neural correlates of perceptual rivalry in the human brain. Science 280, 1930–1934 (1998).The first in a series of recent brain-imaging studies in humans that report fluctuations in BOLD signal either time-locked to transitions between different bistable states (see also references 87 and 88 ), or associated with specific conscious states during binocular rivalry (see also references 26, 27 and 56).

    CAS  Google Scholar 

  86. 86

    Lumer, E. D. & Rees, G. E. Covariation of activity in visual and prefrontal cortex associated with subjective visual perception. Proc. Natl Acad. Sci. USA 96, 1669–1673 (1999).

    CAS  PubMed  Google Scholar 

  87. 87

    Kleinschmidt, A., Buchel, C., Zeki, S. & Frackowiak, R. S. J. Human brain activity during spontaneously reversing perception of ambiguous figures. Proc. R. Soc. Lond. B 265, 2427–2433 (1998).

    CAS  Google Scholar 

  88. 88

    Meenan, J. P. & Miller, L. A. Perceptual flexibility after frontal or temporal lobectomy. Neuropsychologia 32, 1145–1149 (1994).

    CAS  PubMed  Google Scholar 

  89. 89

    Ricci, C. & Blundo, C. Perception of ambiguous figures after focal brain lesions. Neuropsychologia 28, 1163–1173 (1990).

    CAS  PubMed  Google Scholar 

  90. 90

    Wilkins, A. J., Shallice, T. & McCarthy, R. Frontal lesions and sustained attention. Neuropsychologia 25, 359–365 (1987).

    CAS  Google Scholar 

  91. 91

    Beck, D., Rees, G., Frith, C. D. & Lavie, N. Neural correlates of change detection and change blindness. Nature Neurosci. 4, 645–650 (2001).

    CAS  Google Scholar 

  92. 92

    Portas, C. M., Strange, B. A., Friston, K. J., Dolan, R. J. & Frith, C. D. How does the brain sustain a visual percept? Proc. R. Soc. Lond. B 267, 845–850 (2000).

    CAS  Google Scholar 

  93. 93

    Perry, R. J. & Zeki, S. Integrating motion and colour within the visual brain: an fMRI approach to the binding problem. Soc. Neurosci. Abstr. 26, 250.1 (2000).

    Google Scholar 

  94. 94

    Corbetta, M., Shulman, G. L., Miezin, F. M. & Petersen, S. E. Superior parietal cortex activation during spatial attention shifts and visual feature conjunction. Science 270, 802–805 (1995).

    CAS  Google Scholar 

  95. 95

    Wojciulik, E. & Kanwisher, N. The generality of parietal involvement in visual attention. Neuron 23, 747–764 (1999).

    CAS  Google Scholar 

  96. 96

    Marois, R., Chun, M. M. & Gore, J. C. Neural correlates of the attentional blink. Neuron 28, 299–308 (2000).

    CAS  Google Scholar 

  97. 97

    Mack, A. & Rock, I. Inattentional Blindness (MIT Press, Cambridge, Massachusetts, 1998).

    Google Scholar 

  98. 98

    Kastner, S. & Ungerleider, L. G. The neural basis of biased competition in human visual cortex. Neuropsychologia 39, 1263–1276 (2001).

    CAS  PubMed  Google Scholar 

  99. 99

    Hopfinger, J. B., Woldorff, M. G., Fletcher, E. M. & Mangun, G. R. Dissociating top-down attentional control from selective perception and action. Neuropsychologia 39, 1277–1291 (2001).

    CAS  PubMed  Google Scholar 

  100. 100

    Kanwisher, N. Neural events and perceptual awareness. Cognition 79, 89–113 (2001).

    CAS  PubMed  Google Scholar 

  101. 101

    Nakamura, R. K. & Mishkin, M. Blindness in monkeys following non-visual cortical lesions. Brain Res. 188, 572–577 (1980).

    CAS  PubMed  Google Scholar 

  102. 102

    Nakamura, R. K. & Mishkin, M. Chronic 'blindness' following lesions of nonvisual cortex in the monkey. Exp. Brain Res. 63, 173–184 (1986).

    CAS  PubMed  Google Scholar 

  103. 103

    Sperry, R. W., Myers, R. E. & Schrier, A. M. Perceptual capacity of the isolated visual cortex in the cat. Q. J. Exp. Psychol. 12, 65–71 (1960).

    Google Scholar 

  104. 104

    Robertson, L., Treisman, A., Friedman-Hill, S. & Grabowecky, M. The interaction of spatial and object pathways: evidence from Balint's syndrome. J. Cogn. Neurosci. 9, 295–317 (1997).

    CAS  PubMed  Google Scholar 

  105. 105

    Ogawa, S. et al. Brain magnetic-resonance imaging with contrasts dependent on blood oxygenation. Proc. Natl Acad. Sci. USA 89, 5951–5955 (1993).

    Google Scholar 

  106. 106

    Brinker, G. et al. Simultaneous recording of evoked potentials and T2*-weighted MR images during somatosensory stimulation of rat. Magn. Reson. Med. 41, 469–473 (1999).

    CAS  Google Scholar 

  107. 107

    Mathiesen, C., Caesar, K., Akgoren, N. & Lauritzen, M. Modification of activity-dependent increases of cerebral blood flow by excitatory synaptic activity and spikes in rat cerebellar cortex. J. Physiol. 512, 555–566 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    Ogawa, S. et al. An approach to probe some neural systems interaction by functional MRI at neural time scale down to milliseconds. Proc. Natl Acad. Sci. USA 97, 11026–11031 (2000).

    CAS  Google Scholar 

  109. 109

    Rees, G., Friston, K. & Koch, C. A direct quantitative relationship between the functional properties of human and macaque V5. Nature Neurosci. 3, 716–723 (2000).

    CAS  Google Scholar 

  110. 110

    Logothetis, N. K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001).The first investigation of the basis of the fMRI signal using simultaneous single-unit electrophysiological recording in conjunction with BOLD contrast fMRI in monkey.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111

    Bandettini, P. A. & Ungerleider, L. G. From neuron to BOLD: new connections. Nature Neurosci. 4, 864–866 (2001).

    CAS  Google Scholar 

  112. 112

    Nunez, P. L. Electric Fields of the Brain (Oxford Univ. Press, New York, 1981).

    Google Scholar 

  113. 113

    Bramwell, D. I., Aspell, J. E., Green, G. G. R. & Hurlbert, A. C. Steady-state and transient evoked potential correlates of coherent visual motion. Invest. Ophthalmol. Vis. Sci. 40, S823 (1999).

    Google Scholar 

  114. 114

    Arthurs, O. J., Williams, E. J., Carpenter, T. A., Pickard, J. D. & Boniface, S. J. Linear coupling between functional magnetic resonance imaging and evoked potential amplitude in human somatosensory cortex. Neuroscience 101, 803–806 (2000).

    CAS  PubMed  Google Scholar 

  115. 115

    Scannell, J. W. & Young, M. P. Neuronal population activity and functional imaging. Proc R. Soc. Lond. B 266, 875–881 (1999).

    CAS  Google Scholar 

  116. 116

    Aserinsky, E. & Kleitman, N. Regularly occurring periods of eye motility and concomitant phenomena during sleep. Science 118, 273–274 (1953).

    CAS  PubMed  Google Scholar 

  117. 117

    Hobson, J. A. Sleep (Scientific American, New York, 1995).

    Google Scholar 

  118. 118

    Dement, W. & Kleitman, N. The relation of eye movements during sleep to dream activity; an objective method for the study of dreaming. J. Exp. Psychol. 53, 339–346 (1957).

    CAS  PubMed  Google Scholar 

  119. 119

    Braun, A. R. et al. Dissociated pattern of activity in visual cortices and their projections during human rapid eye movement sleep. Science 279, 91–95 (1998).An important early positron emission tomography (PET) study indicating that during REM sleep, visual association cortices operate independently as a closed system dissociated from frontal regions that are associated with the control of behaviour.

    CAS  Google Scholar 

  120. 120

    Hobson, J. A., Pace-Schott, E. F., Stickgold, R. & Kahn, D. To dream or not to dream? Relevant data from new neuroimaging and electrophysiological studies. Curr. Opin. Neurobiol. 8, 239–244 (1998).

    CAS  PubMed  Google Scholar 

  121. 121

    Maquet, P. Functional neuroimaging of normal human sleep by positron emission tomography. J. Sleep Res. 9, 207–231 (2000).

    CAS  Google Scholar 

  122. 122

    Portas, C. M. et al. Auditory processing across the sleep–wake cycle: simultaneous EEG and fMRI monitoring in humans. Neuron 28, 991–999 (2000).

    CAS  PubMed  Google Scholar 

  123. 123

    Hofle, N. et al. Regional cerebral blood flow changes as a function of delta and spindle activity during slow wave sleep in humans. J. Neurosci. 17, 4800–4808 (1997).

    CAS  Google Scholar 

  124. 124

    Solms, M. The Neuropsychology of Dreams (Lawrence Erlbaum, New Jersey, 1996).

    Google Scholar 

  125. 125

    Zilles, K. & Clarke, S. in Cerebral Cortex Vol. 12 (eds Rockland, K. S., Kaas, J. H. & Peters, A.) 673–742 (Plenum Press, New York, 1997).

    Google Scholar 

Download references


This work was supported by the Wellcome Trust (G.R.), the Keck Foundation, the National Science Foundation, the National Institute of Mental Health and The Mettler Fund for Research Relating to Autism. We thank F. Crick and J. Driver for helpful comments on the manuscript.

Author information



Corresponding author

Correspondence to Geraint Rees.

Related links

Related links





Christof Koch's lab

Encyclopedia of Life Sciences

brain imaging: localization of brain functions

brain imaging: observing ongoing neural activity

magnetic resonance imaging

Geraint Rees' lab

MIT Encyclopedia of Cognitive Sciences


magnetic resonance imaging

neurobiology of consciousness



A loosely organized core of neurons that extends from the midbrain to the thalamus. These neurons project widely to the cerebral hemispheres and are thought to be involved in maintaining the alert state.


A neurological syndrome (often involving damage to the right parietal cortex) in which patients show a marked difficulty in detecting or responding to information in the contralesional field.


The ability of a person with a lesion in the primary visual cortex to reach towards or guess at the orientation of objects projected on the part of the visual field that corresponds to this lesion, even though they report that they can see nothing in that part of their visual field.


Small, abrupt eye movements that occur constantly during normal vision.


A condition in which patients become disorientated because they can no longer recognize their environment.


This is often associated with damage to the parietal cortex. The patient can see a stimulus presented alone in the contralateral visual field, but cannot see it if it is presented at the same time as a stimulus in the ipsilateral visual field.


The inability to perceive moving stimuli.


The inability to perceive colours.


Classically, a type of visual defect in which the patient cannot identify a familiar face, even though they know that a face is a face and can point out the features.


A belt of visually responsive areas of cortex surrounding the primary visual cortex.


The perceptual suppression of a monocular stimulus on flashing a different stimulus to the opposite eye, while keeping the original stimulus on the other eye.


The brief time after responding to an attended visual stimulus during which a subsequent visual stimulus cannot be seen or reported accurately.


A characteristic waveform that appears 400 ms after presentation of a target word and is considered to represent an index of language processing.


The problem of binding together in a single unified percept the different features of an object, which are represented in different locations in the brain. For multiple objects, binding the correct features of each object to its perceptual representation is a particularly complex problem.


Strabismus is a condition in which the eyes are not straight or properly aligned. The misalignment reflects the failure of the eye muscles to work together. One eye might turn in (crossed eyes), turn out (wall eyes), turn up or turn down. Although some cats are congenitally strabismic, strabismus can also be achieved by cutting the tendon of one of the eye muscles.


Changes in electrical activity in the brain produce tiny magnetic field perturbations that can be detected as neuromagnetic responses using an array of magnetometers placed on the scalp in a magnetoencephalographic scanner.


The region of the visual field in which visual stimulation typically causes a response in a particular neuron.


Presenting each eye with two slightly different images that create a binocular disparity gives rise to a vivid impression of stereo depth. If the images are intricate patterns of dots (forming a shape) that are embedded in a similar background, then this perception of depth is not instantaneous — the figure 'pops out' after a short period of viewing.


A neurological disorder caused by bilateral damage to the parieto-occipital region of the brain and characterized by disorders of spatial perception.


An impairment in the ability to perceive and attend to all of the features of an object or a scene at the same time. Sufferers perceive the individual parts of a complex visual display better than they do the whole.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rees, G., Kreiman, G. & Koch, C. Neural correlates of consciousness in humans. Nat Rev Neurosci 3, 261–270 (2002).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing