Progress

Neurogenesis in adult primate neocortex: an evaluation of the evidence

Abstract

Reports of continuous genesis and turnover of neurons in the adult primate association neocortex — the site of the highest cognitive functions — have generated great excitement. Here, I review the available evidence, and question the scientific basis of this claim.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Incorporation of 3H-dT as a marker of cell division.
Figure 2: Relationship between the time of origin and the final position of cortical neurons in the macaque monkey.
Figure 3: Satellite glia labelled with 3H-thymidine.
Figure 4: BrdU-labelled satellite glial cells.
Figure 5: Incorporation of exogenous nucleotides into nuclear DNA.
Figure 6: Endothelial cells might be misidentified as migrating cells.

References

  1. 1

    Leblond, C. P. Classification of cell populations on the basis of their proliferative behavior. Natl Cancer Inst. Monogr. 14, 119–150 (1964).

    CAS  PubMed  Google Scholar 

  2. 2

    Jacobson, M. Developmental Neurobiology (Plenum, New York, 1991).

    Google Scholar 

  3. 3

    Gage, F. H. Mammalian neural stem cells. Science 287, 1433–1438 (2000).

    CAS  Article  Google Scholar 

  4. 4

    Rakic, P. Young neurons for old brains? Nature Neurosci. 1, 643–645 (1998).

    Article  Google Scholar 

  5. 5

    Gould, E., Reeves, A. J., Graziano, M. S. & Gross, C. G. Neurogenesis in the neocortex of adult primates. Science 286, 548–552 (1999).

    CAS  Article  Google Scholar 

  6. 6

    Shankle, W. R. et al. Evidence for a postnatal doubling of neuron number in the developing human cerebral cortex between 15 months and 6 years. J. Theor. Biol. 191, 115–140 (1998).

    CAS  Article  Google Scholar 

  7. 7

    Blakeslee, S. A decade of discovery yields a shock about the brain. New York Times F1, F4 (4 January 2000).

  8. 8

    Rakic, P. Kinetics of proliferation and latency between final cell division and onset of differentiation of cerebellar stellate and basket neurons. J. Comp. Neurol. 147, 523–546 (1973).

    CAS  Article  Google Scholar 

  9. 9

    Rakic, P. Neurons in the monkey visual cortex: systematic relation between time of origin and eventual disposition. Science 183, 425–427 (1974).

    CAS  Article  Google Scholar 

  10. 10

    Rakic, P. Genesis of the dorsal lateral geniculate nucleus in the rhesus monkey: site and time of origin, kinetics of proliferation, routes of migration and pattern of distribution of neurons. J. Comp. Neurol. 176, 23–52 (1977).

    CAS  Article  Google Scholar 

  11. 11

    Rakic, P. & Nowakowski, R. S. Time of origin of neurons in the hippocampal region of the rhesus monkey. J. Comp. Neurol. 196, 99–124 (1981).

    CAS  Article  Google Scholar 

  12. 12

    Levitt, P. & Rakic, P. The time of genesis, embryonic origin and differentiation of the brainstem monoamine neurons in the rhesus monkey. Brain Res. 256, 35–57 (1982).

    CAS  Article  Google Scholar 

  13. 13

    Rakic, P. Early developmental events: cell lineages, acquisitions of neuronal positions, and areal and laminar development. Neurosci. Res. Program Bull. 20, 439–451 (1982).

    CAS  PubMed  Google Scholar 

  14. 14

    Kordower, J. H. & Rakic, P. Neurogenesis of the magnocellular basal nuclei in the rhesus monkey. J. Comp. Neurol. 291, 637–653 (1990).

    CAS  Article  Google Scholar 

  15. 15

    LaVail, M. M., Rapaport, D. H. & Rakic, P. Cytogenesis in the monkey retina. J. Comp. Neurol. 309, 86–114 (1991).

    CAS  Article  Google Scholar 

  16. 16

    Schwartz, M. L., Rakic, P. & Goldman-Rakic, P. S. Early phenotype expression of cortical neurons: evidence that a subclass of migrating neurons have callosal axons. Proc Natl Acad Sci U S A 88, 1354–1358 (1991).

    CAS  Article  Google Scholar 

  17. 17

    Kordower, J. H., Piecinski, P. & Rakic, P. Neurogenesis of the amygdalar complex in the rhesus monkey. Brain Res. Dev. Brain Res. 68, 9–15 (1992).

    CAS  Article  Google Scholar 

  18. 18

    Granger, B., LeSurd, A. M., Rakic, P. & Bourgeois, J.-P. Tempo of neurogenesis and synaptogenesis in the primate cingulate mesocortex: comparison with the neocortex. J. Comp. Neurol. 360, 363–376 (1995).

    CAS  Article  Google Scholar 

  19. 19

    Rakic, P. Limits of neurogenesis in primates. Science 227, 1054–1056 (1985).

    CAS  Article  Google Scholar 

  20. 20

    Eckenhoff, M. E. & Rakic, P. Nature of the proliferative cells in the hippocampal dentate gyrus during the life span of the rhesus monkey. J. Neurosci. 8, 2729–2747 (1988).

    CAS  Article  Google Scholar 

  21. 21

    Rakic, P. Mode of cell migration to the superficial layers of fetal monkey neocortex. J. Comp. Neurol. 145, 61–84 (1972).

    CAS  Article  Google Scholar 

  22. 22

    Zecevic, N. & Rakic, P. Development of layer I neurons in the primate cerebral cortex J. Neurosci. 21, 5607–5619 (2001).

    CAS  Article  Google Scholar 

  23. 23

    Levitt, P., Cooper, M. L. & Rakic, P. Coexistence of neuronal and glial precursor cells in the cerebral ventricular zone of the fetal monkey: an ultrastructural immunoperoxidase analysis. J. Neurosci. 1, 27–39 (1981).

    CAS  Article  Google Scholar 

  24. 24

    Yakovlev, P. I. & LeCours, A. R. in Regional Development of the Brain in Early Life (ed. Minkowski, A.) 3–70 (Blackwell, Oxford, 1967).

    Google Scholar 

  25. 25

    Angevine, J. B. Jr & Sidman, R. L. Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature 192, 766–768 (1961).

    Article  Google Scholar 

  26. 26

    Berry, M. & Rogers, A. W. The migration of neuroblasts in the developing cortex. J. Anat. 99, 691–709 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Hicks, S. P. & D'Amato, C. J. Cell migrations to the isocortex in the rat. Anat. Rec. 160, 619–634 (1968).

    CAS  Article  Google Scholar 

  28. 28

    Caviness, V. S. Jr & Sidman, R. L. Time of origin of corresponding cell classes in the cerebral cortex of normal and reeler mutant mice: an autoradiographic analysis. J. Comp. Neurol. 148, 141–152 (1973).

    Google Scholar 

  29. 29

    Smart, I. H. M. & Smart, M. Growth patterns in the lateral wall of the mouse telencephalon. I. Autoradiographic studies of the histogenesis of the isocortex and adjacent areas. J. Anat. 134, 273–298 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Luskin, M. B. & Shatz, C. J. Neurogenesis of the cat's primary visual cortex. J. Comp. Neurol. 242, 611–631 (1985).

    CAS  Article  Google Scholar 

  31. 31

    Jackson, C. A., Peduzzi, J. D. & Hickey, T. L. Visual-cortex development in the ferret. 1. Genesis and migration of visual cortical-neurons. J. Neurosci. 9, 1242–1253 (1989).

    CAS  Article  Google Scholar 

  32. 32

    Takahashi, T., Nowakowski, R. S. & Caviness, V. S. The leaving or Q fraction of the murine cerebral proliferative epithelium: a general model of neocortical neuronogenesis. J. Neurosci. 16, 6183–6196 (1996).

    CAS  Article  Google Scholar 

  33. 33

    Nowakowski, R. S. & Hayes, N. L. New neurons: extraordinary evidence or extraordinary conclusion? Science 288, 771a (2000).

  34. 34

    Gould, E., Vail, N., Wagers, M. & Gross, C. G. Adult-generated hippocampal and neocortical neurons in macaques have a transient existence. Proc Natl Acad Sci U S A 98, 10910–10917 (2001).

    CAS  Article  Google Scholar 

  35. 35

    Kornack, D. R. & Rakic, P. Cell proliferation without neurogenesis in adult primate neocortex. Science 294, 2127–2130 (2001).

    CAS  Article  Google Scholar 

  36. 36

    Kornack, D. R. & Rakic, P. Generation and migration of new olfactory neurons in adult primates. Proc. Natl Acad. Sci. USA 98, 4752–4757 (2001).

    CAS  Article  Google Scholar 

  37. 37

    Mares, V. & Bruckner, G. Postnatal formation of non-neuronal cells in the rat occipital cerebrum: an autoradiographic study of the time and space pattern of cell division. J. Comp. Neurol. 177, 519–528 (1978).

    CAS  Article  Google Scholar 

  38. 38

    Korr, H., Schilling, D., Schultze, B. & Maurer, W. Autoradiographic studies of glial proliferation in different areas of the brain of the 14-day-old rat. Cell Tissue Kinet. 16, 393–413 (1983).

    CAS  PubMed  Google Scholar 

  39. 39

    McDermott, K. W. G. & Lantos, P. L. Cell proliferation in the subependymal layer of the postnatal marmoset, Callithrix jacchus. Brain Res. Dev. Brain Res. 57, 269–277 (1990).

    CAS  Article  Google Scholar 

  40. 40

    Lewis, P. D. Mitotic activity in the primate subependymal layer and the genesis of the gliomas. Nature 217, 974–975 (1968).

    CAS  Article  Google Scholar 

  41. 41

    Rakic, P. DNA synthesis and cell division in the adult primate brain. Ann. NY Acad. Sci. 457, 193–211 (1985).

    CAS  Article  Google Scholar 

  42. 42

    Luskin, M. B. Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11, 173–189 (1993).

    CAS  Article  Google Scholar 

  43. 43

    Lois, C. & Alvarez-Buylla, A. Long-distance neuronal migration in the adult mammalian brain. Science 264, 1145–1148 (1994).

    CAS  Article  Google Scholar 

  44. 44

    Rakic, P. & Kornack D. R. Constraints on neurogenesis in adult primate brain: an evolutionary advantage? Restor. Neurol. 6, 257–266 (1993).

    Google Scholar 

  45. 45

    Kuhn, H. G., Winkler, J., Kempermann, G., Thal, L. J. & Gage, F. H. Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J. Neurosci. 17, 5820–5829 (1997).

    CAS  Article  Google Scholar 

  46. 46

    Magavi, S. S., Leavitt, B. R. & Macklis, J. D. Induction of neurogenesis in the neocortex of adult mice. Nature 405, 951–955 (2000).

    CAS  Article  Google Scholar 

  47. 47

    Kornack, D. R. & Rakic, P. Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proc. Natl Acad. Sci. USA 96, 5768–5773 (1999).

    CAS  Article  Google Scholar 

  48. 48

    Nowakowski, R. S., Lewin, S. B. & Miller, M. W. Bromodeoxyuridine immunohistochemical determination of the lengths of the cell cycle and the DNA-synthetic phase for an anatomically defined population. J. Neurocytol. 18, 311–318 (1989).

    CAS  Article  Google Scholar 

  49. 49

    Rakic, P. Adult neurogenesis in mammals: an identity crisis. J. Neurosci. (in the press).

  50. 50

    Angevine, J. B. Jr. Time of neuron origin in the hippocampal region. An autoradiographic study in the mouse. Exp. Neurol. (Suppl.) 2, 1–70 (1965).

    Google Scholar 

  51. 51

    Yang, Y., Geldmacher, D. S. & Herrup, K. DNA replication precedes neuronal cell death in Alzheimer's disease. J. Neurosci. 15, 2661–2668 (2001). | PubMed |

    Article  Google Scholar 

  52. 52

    Neve, R., McPhie, D. L. & Chen, Y. Alzheimer's disease: a dysfunction of the amyloid precursor protein. Brain Res. 886, 54–66 (2000).

    CAS  Article  Google Scholar 

  53. 53

    Katchanov, J. et al. Mild cerebral ischemia induces loss of cyclin-dependent kinase inhibitors and activation of cell cycle machinery before delayed neuronal cell death. J. Neurosci. 21, 5045–5053 (2001).

    CAS  Article  Google Scholar 

  54. 54

    Copani, A. et al. Activation of cell cycle-associated proteins in neuronal death: a mandatory or dispensable path. Trends Neurosci. 24, 25–31 (2001).

    CAS  Article  Google Scholar 

  55. 55

    Anatskaya. O. V., Vinogradov, A. E. & Kudryavtsev, B. N. Hepatocyte polyploidy and metabolism/life-history traits: hypotheses testing. J. Theor. Biol. 168, 191–199 (1994).

    Article  Google Scholar 

  56. 56

    Pieper, A. A. et al. Poly ADP-ribosylation basally activated by DNA strand breaks reflects glutamate–nitric oxide neurotransmission. Proc. Natl Acad. Sci. USA 97, 1845–1850 (2000).

    CAS  Article  Google Scholar 

  57. 57

    Ino, H. & Chiba, T. Expression of proliferating cell nuclear antigen (PCNA) in the adult and developing mouse nervous system. Brain Res. Mol. Brain Res. 78, 163–174 (2000).

    CAS  Article  Google Scholar 

  58. 58

    Deloulme, J. C. et al. Expression of the neuron-specific enolase gene by rat oligodendroglial cells during their differentiation. J. Neurochem. 66, 936–945 (1996).

    CAS  Article  Google Scholar 

  59. 59

    Sensenbrenner, M., Lucas, J. C. & Deloulme, J. C. Expression of two neuronal markers, growth-associated protein 43 and neuron-specific enolase, in rat glial cells. J. Mol. Med. 75, 653–663 (1997).

    CAS  Article  Google Scholar 

  60. 60

    Ricard, D. et al. Isolation and expression pattern of human Unc-33-like phosphoprotein 6/collapsin response mediator protein 5 (Ulip6/CRMP5): coexistence with Ulip2/CRMP2 in Sema3A-sensitive oligodendrocytes J. Neurosci. 21, 7203–7214 (2001).

    CAS  Article  Google Scholar 

  61. 61

    Parker, J. R. et al. Antineuronal nuclei immunohistochemical staining patterns in childhood ependymomas. J. Child Neurol. 16, 548–552 (2001).

    CAS  Article  Google Scholar 

  62. 62

    Lu, D. et al. Adult bone marrow stromal cells administered intravenously to rats after traumatic brain injury migrate into brain and improve neurological outcome. Neuroreport 12, 559–563 (2001).

    CAS  Article  Google Scholar 

  63. 63

    Brazelton, T. R., Rossi, F. M., Keshet, G. I. & Blau, H. M. From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290, 1775–1779 (2000).

    CAS  Article  Google Scholar 

  64. 64

    Woodbury, D., Schwarz, E. J., Prockop, D. J. & Black, I. B. Adult rat and human bone marrow stromal cells differentiate into neurons. J. Neurosci. Res. 61, 364–370 (2000).

    CAS  Article  Google Scholar 

  65. 65

    Korr, H. & Schmitz, C. Facts and fictions regarding post-natal neurogenesis in the developing human cerebral cortex. J. Theor. Biol. 200, 291–297 (1999).

    CAS  Article  Google Scholar 

  66. 66

    Kakita, A. & Goldman, J. E. Patterns and dynamics of SVZ cell migration in the postnatal forebrain: monitoring living progenitors in slice preparations. Neuron 23, 461–472 (1999).

    CAS  Article  Google Scholar 

  67. 67

    Nacher, J., Rosell, D. R. & McEwen, B. S. Widespread expression of rat collapsin response-mediated protein 4 in the telencephalon and other areas of the adult rat central nervous system. J. Comp. Neurol. 424, 628–639 (2000).

    CAS  Article  Google Scholar 

  68. 68

    Nishiyama, A., Chang, A. & Trapp, B. D. NG2+ glial cells: a novel glial cell population in the adult brain. J. Neuropathol. Exp. Neurol. 58, 1113–1124 (1999).

    CAS  Article  Google Scholar 

  69. 69

    Chan, A., Nishiyama, A., Peterson, J., Prineas, J. & Trapp, B. D. NG2-positive oligodendrocyte progenitor cells in adult human brain and multiple sclerosis lesions. J. Neurosci. 17, 6404–6412 (2000).

    Article  Google Scholar 

  70. 70

    Kirsche, W. Ueber postembryonale matrixzonen im Gehirn verschiedener Vertebraten und deren Beziehung zur Hirnbauplanlehre. Z. Mikrosk. Anat. Forsch. 77, 313–406 (1967).

    CAS  PubMed  Google Scholar 

  71. 71

    Meyer, R. L. Evidence from thymidine labeling for continuing growth of retina and tectum in juvenile goldfish. Exp. Neurol. 59, 99–111 (1978).

    CAS  Article  Google Scholar 

  72. 72

    Goldman, S. A. & Nottebohm, F. Neuronal production, migration and differentiation in a vocal control nucleus of the adult female canary brain. Proc. Natl Acad. Sci. USA 80, 2390–2394 (1983).

    CAS  Article  Google Scholar 

  73. 73

    Kuhn, H. G., Dickinson-Anson, H. & Gage, F. H. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J. Neurosci. 16, 2027–2033 (1996).

    CAS  Article  Google Scholar 

  74. 74

    Gross, C. G. Neurogenesis in the adult brain: death of the dogma. Nature Rev. Neurosci. 1, 67–73 (2000).

    CAS  Article  Google Scholar 

  75. 75

    Altman, J. Are neurons formed in the brains of adult mammals? Science 135, 1127–1128 (1962).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

I am grateful to A. Alvarez-Buylla, V. Caviness, F. H. Gage, P. S. Goldman-Rakic, K. Herrup, D. R. Kornack, P. R. Levitt, E. Markakis, J. H. Morrison, E. Mugnaini, R. S. Nowakowski, D. Purves, N. Sestan and D. A. Steindler for their discussion and comments on the manuscript.

Author information

Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

GFAP

MAP2

NG2

NSE

TOAD-64

β-tubulin III

FURTHER INFORMATION

cell cycle

cerebral cortex development

mitosis

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rakic, P. Neurogenesis in adult primate neocortex: an evaluation of the evidence. Nat Rev Neurosci 3, 65–71 (2002). https://doi.org/10.1038/nrn700

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing