Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Localized GABAergic inhibition of dendritic Ca2+ signalling

Abstract

Neuronal circuits are defined by synaptic connections between their cellular constituents. In this article, I highlight several recent studies emphasizing the surprising level of precision exhibited by inhibitory GABAergic synapses within the neocortex and hippocampus. Specifically, GABAergic inputs to dendritic shafts and spines of pyramidal cells have a key role in the localized regulation of neuronal Ca2+ signalling. These findings provide important new insights into the cellular mechanisms underlying the contributions of inhibitory transmission to both normal and abnormal brain activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GABAergic interneurons and the targets of inhibition in cortical circuits.
Figure 2: Inhibition regulates dendritic spine Ca2+ signalling and synaptic plasticity.

Similar content being viewed by others

References

  1. Alivisatos, A. P. et al. Nanotools for neuroscience and brain activity mapping. ACS Nano 7, 1850–1866 (2013).

    Article  CAS  Google Scholar 

  2. Isaacson, J. S. & Scanziani, M. How inhibition shapes cortical activity. Neuron 72, 231–243 (2011).

    Article  CAS  Google Scholar 

  3. Gogolla, N. et al. Common circuit defect of excitatory-inhibitory balance in mouse models of autism. J. Neurodev. Disord. 1, 172–181 (2009).

    Article  Google Scholar 

  4. Lewis, D. A. & Hashimoto, T. Deciphering the disease process of schizophrenia: the contribution of cortical GABA neurons. Int. Rev. Neurobiol. 78, 109–131 (2007).

    Article  CAS  Google Scholar 

  5. Alvarez, V. A. & Sabatini, B. L. Anatomical and physiological plasticity of dendritic spines. Annu. Rev. Neurosci. 30, 79–97 (2007).

    Article  CAS  Google Scholar 

  6. Yuste, R. Electrical compartmentalization in dendritic spines. Annu. Rev. Neurosci. 36, 429–449 (2013).

    Article  CAS  Google Scholar 

  7. Higley, M. J. & Sabatini, B. L. Calcium signaling in dendrites and spines: practical and functional considerations. Neuron 59, 902–913 (2008).

    Article  CAS  Google Scholar 

  8. Sivilotti, L. & Nistri, A. GABA receptor mechanisms in the central nervous system. Prog. Neurobiol. 36, 35–92 (1991).

    Article  CAS  Google Scholar 

  9. Chalifoux, J. R. & Carter, A. G. GABAB receptor modulation of synaptic function. Curr. Opin. Neurobiol. 21, 339–344 (2011).

    Article  CAS  Google Scholar 

  10. Ascoli, G. A. et al. Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nature Rev. Neurosci. 9, 557–568 (2008).

    Article  CAS  Google Scholar 

  11. Rudy, B., Fishell, G., Lee, S. & Hjerling-Leffler, J. Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons. Dev. Neurobiol. 71, 45–61 (2011).

    Article  Google Scholar 

  12. Pfeffer, C. K., Xue, M., He, M., Huang, Z. J. & Scanziani, M. Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nature Neurosci. 16, 1068–1076 (2013).

    Article  CAS  Google Scholar 

  13. Di Cristo, G. et al. Subcellular domain-restricted GABAergic innervation in primary visual cortex in the absence of sensory and thalamic inputs. Nature Neurosci. 7, 1184–1186 (2004).

    Article  CAS  Google Scholar 

  14. Taniguchi, H., Lu, J. & Huang, Z. J. The spatial and temporal origin of chandelier cells in mouse neocortex. Science 339, 70–74 (2013).

    Article  CAS  Google Scholar 

  15. Higley, M. J. & Contreras, D. Balanced excitation and inhibition determine spike timing during frequency adaptation. J. Neurosci. 26, 448–457 (2006).

    Article  CAS  Google Scholar 

  16. Pouille, F. & Scanziani, M. Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science 293, 1159–1163 (2001).

    Article  CAS  Google Scholar 

  17. Kruglikov, I. & Rudy, B. Perisomatic GABA release and thalamocortical integration onto neocortical excitatory cells are regulated by neuromodulators. Neuron 58, 911–924 (2008).

    Article  CAS  Google Scholar 

  18. Wierenga, C. J. et al. Molecular and electrophysiological characterization of GFP-expressing CA1 interneurons in GAD65-GFP mice. PloS ONE 5, e15915 (2010).

    Article  CAS  Google Scholar 

  19. Xu, X., Roby, K. D. & Callaway, E. M. Immunochemical characterization of inhibitory mouse cortical neurons: three chemically distinct classes of inhibitory cells. J. Comp. Neurol. 518, 389–404 (2010).

    Article  Google Scholar 

  20. Lee, S., Kruglikov, I., Huang, Z. J., Fishell, G. & Rudy, B. A disinhibitory circuit mediates motor integration in the somatosensory cortex. Nature Neurosci. 16, 1662–1670 (2013).

    Article  CAS  Google Scholar 

  21. Chiu, C. Q. et al. Compartmentalization of GABAergic inhibition by dendritic spines. Science 340, 759–762 (2013).

    Article  CAS  Google Scholar 

  22. Wang, Y. et al. Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat. J. Physiol. 561, 65–90 (2004).

    Article  CAS  Google Scholar 

  23. Leao, R. N. et al. OLM interneurons differentially modulate CA3 and entorhinal inputs to hippocampal CA1 neurons. Nature Neurosci. 15, 1524–1530 (2012).

    Article  CAS  Google Scholar 

  24. Kapfer, C., Glickfeld, L. L., Atallah, B. V. & Scanziani, M. Supralinear increase of recurrent inhibition during sparse activity in the somatosensory cortex. Nature Neurosci. 10, 743–753 (2007).

    Article  CAS  Google Scholar 

  25. Silberberg, G. & Markram, H. Disynaptic inhibition between neocortical pyramidal cells mediated by Martinotti cells. Neuron 53, 735–746 (2007).

    Article  CAS  Google Scholar 

  26. Tamas, G., Buhl, E. H. & Somogyi, P. Fast IPSPs elicited via multiple synaptic release sites by different types of GABAergic neurone in the cat visual cortex. J. Physiol. 500, 715–738 (1997).

    Article  CAS  Google Scholar 

  27. Somogyi, P., Tamas, G., Lujan, R. & Buhl, E. H. Salient features of synaptic organisation in the cerebral cortex. Brain Res. Brain Res. Rev. 26, 113–135 (1998).

    Article  CAS  Google Scholar 

  28. Lopez-Bendito, G. et al. Distribution of metabotropic GABA receptor subunits GABAB1a/b and GABAB2 in the rat hippocampus during prenatal and postnatal development. Hippocampus 14, 836–848 (2004).

    Article  CAS  Google Scholar 

  29. Sabaliauskas, N., Shen, H., Homanics, G. E., Smith, S. S. & Aoki, C. Knockout of the γ-aminobutyric acid receptor subunit α4 reduces functional δ-containing extrasynaptic receptors in hippocampal pyramidal cells at the onset of puberty. Brain Res. 1450, 11–23 (2012).

    Article  CAS  Google Scholar 

  30. Serwanski, D. R. et al. Synaptic and nonsynaptic localization of GABAA receptors containing the α5 subunit in the rat brain. J. Comp. Neurol. 499, 458–470 (2006).

    Article  CAS  Google Scholar 

  31. Chen, J. L. et al. Clustered dynamics of inhibitory synapses and dendritic spines in the adult neocortex. Neuron 74, 361–373 (2012).

    Article  CAS  Google Scholar 

  32. van Versendaal, D. et al. Elimination of inhibitory synapses is a major component of adult ocular dominance plasticity. Neuron 74, 374–383 (2012).

    Article  CAS  Google Scholar 

  33. Kubota, Y., Hatada, S., Kondo, S., Karube, F. & Kawaguchi, Y. Neocortical inhibitory terminals innervate dendritic spines targeted by thalamocortical afferents. J. Neurosci. 27, 1139–1150 (2007).

    Article  CAS  Google Scholar 

  34. Major, G., Larkum, M. E. & Schiller, J. Active properties of neocortical pyramidal neuron dendrites. Annu. Rev. Neurosci. 36, 1–24 (2013).

    Article  CAS  Google Scholar 

  35. Larkum, M. E., Zhu, J. J. & Sakmann, B. A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398, 338–341 (1999).

    Article  CAS  Google Scholar 

  36. Losonczy, A. & Magee, J. C. Integrative properties of radial oblique dendrites in hippocampal CA1 pyramidal neurons. Neuron 50, 291–307 (2006).

    Article  CAS  Google Scholar 

  37. Murayama, M. et al. Dendritic encoding of sensory stimuli controlled by deep cortical interneurons. Nature 457, 1137–1141 (2009).

    Article  CAS  Google Scholar 

  38. Xu, N. L. et al. Nonlinear dendritic integration of sensory and motor input during an active sensing task. Nature 492, 247–251 (2012).

    Article  CAS  Google Scholar 

  39. Lavzin, M., Rapoport, S., Polsky, A., Garion, L. & Schiller, J. Nonlinear dendritic processing determines angular tuning of barrel cortex neurons in vivo. Nature 490, 397–401 (2012).

    Article  CAS  Google Scholar 

  40. Palmer, L. M. et al. NMDA spikes enhance action potential generation during sensory input. Nature Neurosci. 17, 383–390 (2014).

    Article  CAS  Google Scholar 

  41. Miles, R., Toth, K., Gulyas, A. I., Hajos, N. & Freund, T. F. Differences between somatic and dendritic inhibition in the hippocampus. Neuron 16, 815–823 (1996).

    Article  CAS  Google Scholar 

  42. Tsubokawa, H. & Ross, W. N. IPSPs modulate spike backpropagation and associated [Ca2+]i changes in the dendrites of hippocampal CA1 pyramidal neurons. J. Neurophysiol. 76, 2896–2906 (1996).

    Article  CAS  Google Scholar 

  43. Lovett-Barron, M. et al. Regulation of neuronal input transformations by tunable dendritic inhibition. Nature Neurosci. 15, 423–430 (2012).

    Article  CAS  Google Scholar 

  44. Qian, N. & Sejnowski, T. J. When is an inhibitory synapse effective? Proc. Natl Acad. Sci. USA 87, 8145–8149 (1990).

    Article  CAS  Google Scholar 

  45. Kanemoto, Y. et al. Spatial distributions of GABA receptors and local inhibition of Ca2+ transients studied with GABA uncaging in the dendrites of CA1 pyramidal neurons. PloS ONE 6, e22652 (2011).

    Article  CAS  Google Scholar 

  46. Gidon, A. & Segev, I. Principles governing the operation of synaptic inhibition in dendrites. Neuron 75, 330–341 (2012).

    Article  CAS  Google Scholar 

  47. Chalifoux, J. R. & Carter, A. G. GABAB receptors modulate NMDA receptor calcium signals in dendritic spines. Neuron 66, 101–113 (2010).

    Article  CAS  Google Scholar 

  48. Chalifoux, J. R. & Carter, A. G. GABAB receptor modulation of voltage-sensitive calcium channels in spines and dendrites. J. Neurosci. 31, 4221–4232 (2011).

    Article  CAS  Google Scholar 

  49. Murphy, J. A. et al. Phosphorylation of Ser1166 on GluN2B by PKA is critical to synaptic NMDA receptor function and Ca2+ signaling in spines. J. Neurosci. 34, 869–879 (2014).

    Article  CAS  Google Scholar 

  50. Skeberdis, V. A. et al. Protein kinase A regulates calcium permeability of NMDA receptors. Nature Neurosci. 9, 501–510 (2006).

    Article  CAS  Google Scholar 

  51. Higley, M. J. & Sabatini, B. L. Competitive regulation of synaptic Ca influx by D2 dopamine and A2A adenosine receptors. Nature Neurosci. 13, 958–966 (2010).

    Article  CAS  Google Scholar 

  52. Padgett, C. L. & Slesinger, P. A. GABAB receptor coupling to G-proteins and ion channels. Adv. Pharmacol. 58, 123–147 (2010).

    Article  CAS  Google Scholar 

  53. Chen, Y. J. et al. ErbB4 in parvalbumin-positive interneurons is critical for neuregulin 1 regulation of long-term potentiation. Proc. Natl Acad. Sci. USA 107, 21818–21823 (2010).

    Article  CAS  Google Scholar 

  54. Meredith, R. M., Floyer-Lea, A. M. & Paulsen, O. Maturation of long-term potentiation induction rules in rodent hippocampus: role of GABAergic inhibition. J. Neurosci. 23, 11142–11146 (2003).

    Article  CAS  Google Scholar 

  55. Hayama, T. et al. GABA promotes the competitive selection of dendritic spines by controlling local Ca2+ signaling. Nature Neurosci. 16, 1409–1416 (2013).

    Article  CAS  Google Scholar 

  56. Wang, L. & Maffei, A. Inhibitory plasticity dictates the sign of plasticity at excitatory synapses. J. Neurosci. 34, 1083–1093 (2014).

    Article  CAS  Google Scholar 

  57. Marsden, K. C., Beattie, J. B., Friedenthal, J. & Carroll, R. C. NMDA receptor activation potentiates inhibitory transmission through GABA receptor-associated protein-dependent exocytosis of GABAA receptors. J. Neurosci. 27, 14326–14337 (2007).

    Article  CAS  Google Scholar 

  58. Muir, J. et al. NMDA receptors regulate GABAA receptor lateral mobility and clustering at inhibitory synapses through serine 327 on the γ2 subunit. Proc. Natl Acad. Sci. USA 107, 16679–16684 (2010).

    Article  CAS  Google Scholar 

  59. Huang, Z. J. Subcellular organization of GABAergic synapses: role of ankyrins and L1 cell adhesion molecules. Nature Neurosci. 9, 163–166 (2006).

    Article  CAS  Google Scholar 

  60. Bloodgood, B. L. & Sabatini, B. L. in Biology of the NMDA Receptor (ed. Van Dongen, A. M.) 201–212 (Boca Raton, 2009).

    Google Scholar 

  61. Cull-Candy, S., Kelly, L. & Farrant, M. Regulation of Ca2+-permeable AMPA receptors: synaptic plasticity and beyond. Curr. Opin. Neurobiol. 16, 288–297 (2006).

    Article  CAS  Google Scholar 

  62. Denk, W., Sugimori, M. & Llinas, R. Two types of calcium response limited to single spines in cerebellar Purkinje cells. Proc. Natl Acad. Sci. USA 92, 8279–8282 (1995).

    Article  CAS  Google Scholar 

  63. Hille, B. Ion Channels of Excitable Membranes (Sinauer Associates, 2001).

    Google Scholar 

Download references

Acknowledgements

The author thanks J. Cardin and members of the Higley laboratory for careful reading of this manuscript. The laboratory's work is funded by grants from the US National Institutes of Health (MH099045), the Klingenstein Foundation, The Brain and Behavior Research Foundation and the March of Dimes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Higley.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Higley, M. Localized GABAergic inhibition of dendritic Ca2+ signalling. Nat Rev Neurosci 15, 567–572 (2014). https://doi.org/10.1038/nrn3803

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3803

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing