Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The many paths to fear

Abstract

Fear is an emotion that has powerful effects on behaviour and physiology across animal species. It is accepted that the amygdala has a central role in processing fear. However, it is less widely appreciated that distinct amygdala outputs and downstream circuits are involved in different types of fear. Data show that fear of painful stimuli, predators and aggressive members of the same species are processed in independent neural circuits that involve the amygdala and downstream hypothalamic and brainstem circuits. Here, we discuss data supporting multiple fear pathways and the implications of this distributed system for understanding and treating fear.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Parallel circuits mediate fear of pain, predators and aggressive conspecifics.
Figure 2: Circuits supporting the encoding and retrieval of learned fear.

Similar content being viewed by others

References

  1. LeDoux, J. E. Rethinking the emotional brain. Neuron 73, 653–676 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Blanchard, R. J., Blanchard, D. C. & Hori, K. in Ethoexperimental Approaches to the Study of Behavior (eds Blanchard, R. J., Brain, P. F., Blanchard, D. C. & Parmigiani, S.) 114–136 (Kluwer Academic Publishing, 1989).

    Book  Google Scholar 

  3. Ribeiro-Barbosa, E. R., Canteras, N. S., Cezario, A. F., Blanchard, R. J. & Blanchard, D. C. An alternative experimental procedure for studying predator related defensive responses. Neurosci. Biobehav. Rev. 29, 1255–1263 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. LeDoux, J. E. Emotion circuits in the brain. Annu. Rev. Neurosci. 23, 155–184 (2000).

    CAS  PubMed  Google Scholar 

  5. Maren, S. Neurobiology of Pavlovian fear conditioning. Annu. Rev. Neurosci. 24, 897–931 (2001).

    CAS  PubMed  Google Scholar 

  6. Johansen, J. P., Cain, C. K., Ostroff, L. E. & LeDoux, J. E. Molecular mechanisms of fear learning and memory. Cell 147, 509–524 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pine, D. S. et al. Methods for developmental studies of fear conditioning circuitry. Biol. Psychiatry 50, 225–228 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Lanuza, E., Nader, K. & Ledoux, J. E. Unconditioned stimulus pathways to the amygdala: effects of posterior thalamic and cortical lesions on fear conditioning. Neuroscience 125, 305–315 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Bolles, R. C. Species-specific defense reactions and avoidance learning. Psychol. Rev. 77, 32–48 (1970).

    Article  Google Scholar 

  10. Fanselow, M. S. Neural organization of the defensive behavior system responsible for fear. Psychon. Bull. Rev. 1, 429–438 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Swanson, L. W. & Petrovich, G. D. What is the amygdala? Trends Neurosci. 21, 323–231 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Swanson, L. W. Cerebral hemisphere regulation of motivated behavior. Brain Res. 886, 113–164 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Dielenberg, R. A., Hunt, G. E. & McGregor, I. S. “When a rat smells a cat”: the distribution of Fos immunoreactivity in rat brain following exposure to a predatory odor. Neuroscience 104, 1085–1097 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. McGregor, I. S., Hargreaves, G. A., Apfelbach, R. & Hunt, G. E. Neural correlates of cat odor-induced anxiety in rats: region-specific effects of the benzodiazepine midazolam. J. Neurosci. 24, 4134–4144 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Papes, F., Logan, D. W. & Stowers, L. The vomeronasal organ mediates interspecies defensive behaviors through detection of protein pheromone homologs. Cell 141, 692–703 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Scalia, F. & Winans, S. S. The differential projections of the olfactory bulb and accessory olfactory bulb in mammals. J. Comp. Neurol. 161, 31–55 (1975).

    Article  CAS  PubMed  Google Scholar 

  17. Martinez, R. C., Carvalho-Netto, E. F., Ribeiro-Barbosa, E. R., Baldo, M. V. & Canteras, N. S. Amygdalar roles during exposure to a live predator and to a predator-associated context. Neuroscience 172, 314–328 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Li, C. I., Maglinao, T. L. & Takahashi, L. K. Medial amygdala modulation of predator odor induced unconditioned fear in the rat. Behav. Neurosci. 118, 324–332 (2004).

    Article  PubMed  Google Scholar 

  19. McDonald, A. J. Cortical pathways to mammalian amygdala. Prog. Neurobiol. 55, 257–332 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Kollack-Walker, S., Don, C., Watson, S. J. & Akil, H. Differential expression of c-fos mRNA within neurocircuits of male hamsters exposed to acute or chronic defeat. J. Neuroendocrinol. 11, 547–559 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Rogan, M. T., Staubli, U. V. & LeDoux, J. E. Fear conditioning induces associative long-term potentiation in the amygdala. Nature 390, 604–607 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Maren, S. Seeking a spotless mind: extinction, deconsolidation, and erasure of fear memory. Neuron 70, 830–845 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Muller, J., Corodimas, K. P., Fridel, Z. & LeDoux, J. E. Functional inactivation of the lateral and basal nuclei of the amygdala by muscimol infusion prevents fear conditioning to an explicit conditioned stimulus and to contextual stimuli. Behav. Neurosci. 111, 683–691 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Gale, G. D. et al. Role of the basolateral amygdala in the storage of fear memories across the adult lifetime of rats. J. Neurosci. 24, 3810–3815 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pitkänen, A., Savander, V. & LeDoux, J. E. Organization of intra-amygdaloid circuitries in the rat: an emerging framework for understanding functions of the amygdala. Trends Neurosci. 20, 517–523 (1997).

    Article  PubMed  Google Scholar 

  26. Wilensky, A. E., Schafe, G. E., Kristensen, M. P. & LeDoux, J. E. Rethinking the fear circuit: the central nucleus of the amygdala is required for the acquisition, consolidation, and expression of Pavlovian fear conditioning. J. Neurosci. 26, 12387–12396 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Blanchard, D. C., Canteras, N. S., Markham, C. M., Pentkowski, N. S. & Blanchard, R. J. Lesions of structures showing FOS expression to cat presentation: effects on responsivity to a cat, cat odor, and nonpredator threat. Neurosci. Biobehav. Rev. 29, 1243–1253 (2005).

    Article  PubMed  Google Scholar 

  28. Huber, D., Veinante, P. & Stoop, R. Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala. Science 308, 245–248 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Ciocchi, S. et al. Encoding of conditioned fear in central amygdala inhibitory circuits. Nature 468, 277–282 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Haubensak, W. et al. Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature 468, 270–276 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gozzi, A. et al. A neural switch for active and passive fear. Neuron 67, 656–666 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Canteras, N. S., Simerly, R. B. & Swanson, L. W. Organization of projections from the medial nucleus of the amygdala: a PHAL study in the rat. J. Comp. Neurol. 360, 213–245 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Petrovich, G. D., Risold, P. Y. & Swanson, L. W. Organization of projections from the basomedial nucleus of the amygdala: a PHAL study in the rat. J. Comp. Neurol. 374, 387–420 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Cezario, A. F., Ribeiro-Barbosa, E. R., Baldo, M. V. & Canteras, N. S. Hypothalamic sites responding to predator threats — the role of the dorsal premammillary nucleus in unconditioned and conditioned antipredatory defensive behavior. Eur. J. Neurosci. 28, 1003–1015 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Canteras, N. S., Chiavegatto, S., Ribeiro do Valle, L. E. & Swanson, L. W. Severe reduction of rat defensive behavior to a predator by discrete hypothalamic chemical lesions. Brain Res. Bull. 44, 297–305 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Blanchard, D. C. et al. Dorsal premammillary nucleus differentially modulates defensive behaviors induced by different threat stimuli in rats. Neurosci. Lett. 345, 145–148 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Canteras, N. S., Kroon, J. A., Do-Monte, F. H., Pavesi, E. & Carobrez, A. P. Sensing danger through the olfactory system: the role of the hypothalamic dorsal premammillary nucleus. Neurosci. Biobehav. Rev. 32, 1228–1235 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Do Monte, F. H., Canteras, N. S., Fernandes, D., Assreuy, J. & Carobrez, A. P. New perspectives on β-adrenergic mediation of innate and learned fear responses to predator odor. J. Neurosci. 28, 13296–12302 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Motta, S. C. et al. Dissecting the brain's fear system reveals the hypothalamus is critical for responding in subordinate conspecific intruders. Proc. Natl Acad. Sci. USA 106, 4870–4875 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Risold, P. Y. & Swanson, L. W. Connections of the rat lateral septal complex. Brain Res. Rev. 24, 115–195 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Bittencourt, A. S., Carobrez, A. P., Zamprogno, L. P., Tufik, S. & Schenberg, L. C. Organization of single components of defensive behaviors within distinct columns of periaqueductal gray matter of the rat: role of N-methyl- D-aspartic acid glutamate receptors. Neuroscience 125, 71–89 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Sukikara, M. H., Mota-Ortiz, S. R., Baldo, M. V., Felicio, L. F. & Canteras, N. S. The periaqueductal gray and its potential role in maternal behavior inhibition in response to predatory threats. Behav. Brain Res. 209, 226–233 (2010).

    Article  PubMed  Google Scholar 

  43. Furigo, I. C. et al. The role of the superior colliculus in predatory hunting. Neuroscience 165, 1–15 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Dean, P., Redgrave, P. & Westby, G. W. Event or emergency? Two response systems in the mammalian superior colliculus. Trends Neurosci. 12, 137–147 (1989).

    Article  CAS  PubMed  Google Scholar 

  45. Bittencourt, A. S., Nakamura-Palacios, E. M., Mauad, H., Tufik, S. & Schenberg, L. C. Organization of electrically and chemically evoked defensive behaviors within the deeper collicular layers as compared to the periaqueductal gray matter of the rat. Neuroscience 133, 873–892 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Supple, W. F. Jr, Leaton, R. N. & Fanselow, M. S. Effects of cerebellar vermal lesions on species-specific fear responses, neophobia, and taste-aversion learning in rats. Physiol. Behav. 39, 579–586 (1987).

    Article  PubMed  Google Scholar 

  47. Katoh, Y. Y., & Benedek, G. Cerebellar fastigial neurons send bifurcating axons to both the left and right superior colliculus in cats. Brain Res. 970, 246–249 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Homma, Y., Nonaka, S., Matsuyama, K. & Mori, S. Fastigiofugal projection to the brainstem nuclei in the cat: an anterograde PHA-L tracing study. Neurosci. Res. 23, 89–102 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Goto, M., Canteras, N. S., Burns, G. & Swanson, L. W. Projections from the subfornical region of the lateral hypothalamic area. J. Comp. Neurol. 493, 412–438 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yi, C. X., Scherer, T. & Tschöp, M. H. Cajal revisited: does the VMH make us fat? Nature Neurosci. 14, 806–808 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Figueiredo, H. F., Bodie, B. L., Tauchi, M., Dolgas, C. M. & Herman, J. P. Stress integration after acute and chronic predator stress: differential activation of central stress circuitry and sensitization of the hypothalamo–pituitary–adrenocortical axis. Endocrinology 144, 5249–5258 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Dielenberg, R. A., Carrive, P. & McGregor, I. S. The cardiovascular and behavioral response to cat odor in rats: unconditioned and conditioned effects Brain Res. 897, 228–237 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Dielenberg, R. A., Leman, S. & Carrive, P. Effect of dorsal periaqueductal gray lesions on cardiovascular and behavioral responses to cat odor exposure in rats. Behav. Brain Res. 153, 487–496 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Blanchard, D. C. et al. Visible burrow system as a model of chronic social stress: behavioral and neuroendocrine correlates. Psychoneuroendocrinology 20, 117–134 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Huhman, K. L., Moore, T. O., Ferris, C. F., Mougey, E. H. & Meyerhoff, J. L. Acute and repeated exposure to social conflict in male golden hamsters: increases in plasma POMC-peptides and cortisol and decreases in plasma testosterone. Horm. Behav. 25, 206–216 (1991).

    Article  CAS  PubMed  Google Scholar 

  56. Blanchard, D. C., Sakai, R. R., McEwen, B. S., Weiss, S. M. & Blanchard, R. J. Subordination stress: behavioral, brain, and neuroendocrine correlates. Behav. Brain Res. 58, 113–121 (1993).

    Article  CAS  PubMed  Google Scholar 

  57. Jasnow, A. M. & Huhman, K. L. Activation of GABAA receptors in the amygdala blocks the acquisition and expression of conditioned defeat in Syrian hamsters. Brain Res. 920, 142–150 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Foster, M. T., Solomon, M. B., Huhman, K. L. & Bartness, T. J. Social defeat increases food intake, body mass, and adiposity in Syrian hamsters. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, R1284–R1293 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Solomon, M. B., Foster, M. T., Bartness, T. J. & Huhman, K. L. Social defeat and footshock increases body mass and adiposity in male Syrian hamsters. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R283–R290 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Blanchard, D. C. & Blanchard, R. J. Behavioral correlates of chronic dominance–subordination relationships of male rats in a seminatural situation. Neurosci. Biobehav. Rev. 14, 455–462 (1990).

    Article  CAS  PubMed  Google Scholar 

  61. Kudryavtseva, N., Amstislavskaya, T. & Kucheryavy, S. Effects of repeated aggressive encounters on approach to a female and plasma testosterone in male mice. Horm. Behav. 45, 103–107 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Kollack-Walker, S. & Newman, S. W. Mating and agonistic behavior produce different patterns of Fos immunolabeling in the male Syrian hamster brain. Neuroscience 66, 721–736 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Coolen, L. M., Peters, H. J. & Veening, J. G. Fos immunoreactivity in the rat brain following consummatory elements of sexual behavior: a sex comparison. Brain Res. 738, 67–82 (1996).

    Article  PubMed  Google Scholar 

  64. Numan, M. Hypothalamic neural circuits regulating maternal responsiveness toward infants. Behav. Cogn. Neurosci. Rev. 5, 163–190 (2006).

    Article  PubMed  Google Scholar 

  65. Lin, D. et al. Functional identification of an aggression locus in the mouse hypothalamus. Nature 470, 221–226 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Glass, M. J., Billington, C. J. & Levine, A. S. Naltrexone administered to central nucleus of amygdala or PVN: neural dissociation of diet and energy. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R86–R92 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Pomonis, J. D. et al. Sucrose consumption increases naloxone-induced c-Fos immunoreactivity in limbic forebrain. Am. J. Physiol. Regul. Integr. Comp. Physiol. 278, R712–R719 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Tye, K. M. et al. Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature 471, 358–362 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hitchcott, P. K. & Phillips, G. D. Double dissociation of the behavioral effects of 7-OH-DPAT infusions in the central and basolateral amygdala nuclei upon Pavlovian and instrumental conditioned appetitive behaviors. Psychopharmacology 140, 458–469 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Petrovich, G. D., Ross, C. A., Mody, P., Holland, P. C. & Gallagher, M. Central, but not basolateral, amygdala is critical for control of feeding by aversive learned cues. J. Neurosci. 29, 15205–15212 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Burwell, R. D., Saddoris, M. P., Bucci, D. J. & Wiig, K. A. Corticohippocampal contributions to spatial and contextual learning. J. Neurosci. 24, 3826–3836 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tang, J. et al. Pavlovian fear memory induced by activation in the anterior cingulate cortex. Mol. Pain 1, 6 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bissière, S. et al. The rostral anterior cingulate cortex modulates the efficiency of amygdala-dependent fear learning. Biol. Psychiatry 63, 821–831 (2008).

    Article  PubMed  Google Scholar 

  74. Keene, C. S. & Bucci, D. J. Contributions of the retrosplenial and posterior parietal cortices to cue-specific and contextual fear conditioning. Behav. Neurosci. 122, 89–97 (2008).

    Article  PubMed  Google Scholar 

  75. Keene, C. S. & Bucci, D. J. Neurotoxic lesions of retrosplenial cortex disrupt signaled and unsignaled contextual fear conditioning. Behav. Neurosci. 122, 1070–1077 (2008).

    Article  PubMed  Google Scholar 

  76. Johansen, J. P., Tarpley, J. W., LeDoux, J. E. & Blair, H. T. Neural substrates for expectation-modulated fear learning in the amygdala and periaqueductal gray. Nature Neurosci. 13, 979–986 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Furlong, T. M., Cole, S., Hamlin, A. S. & McNally, G. P. The role of prefrontal cortex in predictive fear learning. Behav. Neurosci. 124, 574–586 (2010).

    Article  PubMed  Google Scholar 

  78. Pavesi, E., Canteras, N. S. & Carobrez, A. P. Acquisition of Pavlovian fear conditioning using β-adrenoceptor activation of the dorsal premammillary nucleus as an unconditioned stimulus to mimic live predator-threat exposure. Neuropsychopharmacology 36, 926–939 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Di Scala, G., Mana, M. J., Jacobs, W. J. & Phillips, A. G. Evidence of Pavlovian conditioned fear following electrical stimulation of the periaqueductal grey in the rat. Physiol. Behav. 40, 55–63 (1987).

    Article  CAS  PubMed  Google Scholar 

  80. Krout, K. E. & Loewy, A. D. Periaqueductal gray matter projections to midline and intralaminar thalamic nuclei of the rat. J. Comp. Neurol. 424, 111–141 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Carvalho-Netto, E. F., Martinez, R. C., Baldo, M. V. & Canteras, N. S. Evidence for the thalamic targets of the medial hypothalamic defensive system mediating emotional memory to predatory threats. Neurobiol. Learn. Mem. 93, 479–486 (2010).

    Article  PubMed  Google Scholar 

  82. Maren, S. Neurotoxic or electrolytic lesions of the ventral subiculum produce deficits in the acquisition and expression of Pavlovian fear conditioning in rats. Behav. Neurosci. 113, 283–290 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Phillips, R. G. & LeDoux, J. E. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav. Neurosci. 106, 274–285 (1992).

    Article  CAS  PubMed  Google Scholar 

  84. Helmstetter, F. J. & Bellgowan, P. S. Effects of muscimol applied to the basolateral amygdala on acquisition and expression of contextual fear conditioning in rats. Behav. Neurosci. 108, 1005–1009 (1994).

    Article  CAS  PubMed  Google Scholar 

  85. Goosens, K. A. & Maren, S. Contextual and auditory fear conditioning are mediated by the lateral, basal, and central amygdaloid nuclei in rats. Learn. Mem. 8, 148–155 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ponnusamy, R., Poulos, A. M. & Fanselow, M. S. Amygdala-dependent and amygdala-independent pathways for contextual fear conditioning. Neuroscience 147, 919–927 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Corcoran, K. A. & Quirk, G. J. Activity in prelimbic cortex is necessary for the expression of learned, but not innate, fears. J. Neurosci. 27, 840–844 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cenquizca, L. A. & Swanson, L. W. Spatial organization of direct hippocampal field CA1 axonal projections to the rest of the cerebral cortex. Brain Res. Rev. 56, 1–26 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. American Psychiatric Association Task Force on DSM-IV. Diagnostic and Statistical Manual of Mental Disorders: DSM-IV-TR (American Psychiatric Association, 2000).

  90. Davis, M., Walker, D. L., Miles, L. & Grillon, C. Phasic versus sustained fear in rats and humans: role of the extended amygdala in fear versus anxiety. Neuropsychopharmacology 35, 105–135 (2010).

    Article  PubMed  Google Scholar 

  91. Wilent, W. B. et al. Induction of panic attack by stimulation of the ventromedial hypothalamus. J. Neurosurg. 112, 1295–1298 (2010).

    Article  PubMed  Google Scholar 

  92. Kurrasch, D. M. et al. The neonatal ventromedial hypothalamus transcriptome reveals novel markers with spatially distinct patterning. J. Neurosci. 27, 13624–13634 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Shima, Y. et al. Ventromedial hypothalamic nucleus-specific enhancer of Ad4BP/SF-1 gene. Mol. Endocrinol. 19, 2812–2823 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Centeno, M. L., Sanchez, R. L., Reddy, A. P., Cameron, J. L. & Bethea, C. L. Corticotropin-releasing hormone and pro-opiomelanocortin gene expression in female monkeys with differences in sensitivity to stress. Neuroendocrinology 86, 277–288 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Chandrasekar, G., Lauter, G. & Hauptmann, G. Distribution of corticotropin-releasing hormone in the developing zebrafish brain. J. Comp. Neurol. 505, 337–351 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Demsk, L. S. & Knigge, K. M. The telencephalon and hypothtalamus of the Bluegill (Lepomis macrochirus): evoked feeding, aggressive and reproductive behavior with representative frontal sections. J. Comp. Neurol. 143, 1–16 (1971).

    Article  Google Scholar 

  97. Amano, K. et al. Endorphins and pain relief. Further observations on electrical stimulation of the lateral part of the periaqueductal gray matter during rostral mesencephalic reticulotomy for pain relief. Appl. Neurophysiol. 45, 123–135 (1982).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work evolved out of discussions initiated at the Janelia Conference 'Can New Tools Revolutionize Understanding of Hypothalamic Neural Circuits?' in October 2009 and was supported in part by funds from the European Molecular Biology Laboratory to C.G. and grants from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, no. 05/59286-4) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) to N.S.C.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cornelius T. Gross or Newton Sabino Canteras.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Cornelius T. Gross's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gross, C., Canteras, N. The many paths to fear. Nat Rev Neurosci 13, 651–658 (2012). https://doi.org/10.1038/nrn3301

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3301

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing