Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The cognitive neuroscience of ageing

Key Points

  • The main challenge in the field of neurocognitive ageing is to understand the brain mechanisms that might underlie age differences in cognitive performance or why some functions are maintained into older age.

  • A number of ideas have been suggested to explain age differences in brain activity during cognitive tasks, including compensation, dedifferentiation and less efficient use of neural resources. Although there is evidence to support all of these theories, there is also evidence to the contrary, and it is not yet clear whether one is more characteristic of ageing than the others.

  • Recently, there has been increasing interest in examining the effects of age on large-scale brain networks. One of these in particular, the default network, appears to be especially vulnerable to the effects of age.

  • There is evidence that age differences in brain structure can influence the relationship between activity in task-related brain regions and behaviour, indicating a complex interplay between structure and function.

  • There is a growing literature on how various risk factors for Alzheimer's disease, such as the apolipoprotein Egene and mild cognitive impairment, affect task-related brain activity in older adults. This work also highlights the similarities between age differences in healthy older versus younger adults and differences between adults with mild cognitive impairment and controls, suggesting a continuum of effects due to age and neuropathological brain changes.

  • Future work should aim to more clearly define compensatory brain activity, make more use of lifespan and longitudinal approaches and attempt to account for the large number of factors that influence the ageing process, which vary from individual to individual and include genetics and life experiences.

Abstract

The availability of neuroimaging technology has spurred a marked increase in the human cognitive neuroscience literature, including the study of cognitive ageing. Although there is a growing consensus that the ageing brain retains considerable plasticity of function, currently measured primarily by means of functional MRI, it is less clear how age differences in brain activity relate to cognitive performance. The field is also hampered by the complexity of the ageing process itself and the large number of factors that are influenced by age. In this Review, current trends and unresolved issues in the cognitive neuroscience of ageing are discussed.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Increased brain activity in older adults may be associated with better or worse task performance.
Figure 2: The 'compensation-related utilization of neural circuits hypothesis'.
Figure 3: The default network in young and older adults.
Figure 4: A hypothetical model of the various dimensions that can interact with ageing.

References

  1. 1

    Tulving, E. Elements of Episodic Memory (Oxford Univ. Press, 1983).

    Google Scholar 

  2. 2

    Craik, F. I. M. & Bosman, E. A. in Gerontechnology: Proceedings of the First International Conference on Technology and Aging (eds Bouma, H. & Graafmans, J.) 79–92 (IOS Press, 1992).

    Google Scholar 

  3. 3

    Balota, D. A., Dolan, P. O. & Duchek, J. M. in The Oxford Handbook of Memory (eds Tulving, E. & Craik, F.) 395–410 (Oxford Univ. Press, 2000).

    Google Scholar 

  4. 4

    Zacks, R. T., Hasher, L. & Li, K. Z. H. in The Handbook of Aging and Cognition (eds Craik, F. I. M. & Salthouse, T. A.) 200–230 (Erlbaum, 2000).

    Google Scholar 

  5. 5

    Connelly, S. L., Hasher, L. & Zacks, R. T. Age and reading: the impact of distraction. Psychol. Aging 6, 533–541 (1991).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6

    Allen, P. A., Makken, D. J., Groth, K. E. & Crozier, L. C. Impact of age, redundancy, and perceptual noise on visual search. J. Gerontol. 47, P69–P74 (1992).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7

    Madden, D. J. Adult age differences in attentional selectivity and capacity. Eur. J. Cogn. Psychol. 2, 229–252 (1990).

    Article  Google Scholar 

  8. 8

    Anderson, N. D., Craik, F. I. M. & Naveh-Benjamin, M. The attentional demands of encoding and retrieval in younger and older adults: I. Evidence from divided attention costs. Psychol. Aging 13, 405–423 (1998).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9

    Kramer, A. F., Hahn, S. & Gopher, D. Task coordination and aging: explorations of executive control processes in the task switching paradigm. Acta Psychol. (Amst.) 101, 339–378 (1999).

    CAS  Article  Google Scholar 

  10. 10

    Cepeda, N. J., Kramer, A. F. & Gonzalez de Sather, J. C. Changes in executive control across the life span: examination of task-switching performance. Dev. Psychol. 37, 715–730 (2001).

    CAS  Article  Google Scholar 

  11. 11

    Hasher, L. & Zacks, R. T. in The Psychology of Learning and Motivation Vol. 22 (ed. Bower, G. H.) 193–225 (Academic Press, 1988).

    Google Scholar 

  12. 12

    Healey, M. K., Campbell, K. L. & Hasher, L. in Progress in Brain Research Vol. 169: The Essence of Memory (eds Sossin, W., Lacaille, J. C., Castellucci, V. F. & Belleville, S.) 353–363 (Elsevier, 2008). This review describes work characterizing age differences in inhibition. When younger and older adults are presented with a task in the presence of distraction (and told to ignore the distracting information), older adults have better memory for the distracting material when tested subsequently. This effect is thought to be due to an age-related reduction in inhibitory effectiveness.

    Google Scholar 

  13. 13

    Salthouse, T. A. The processing-speed theory of adult age differences in cognition. Psychol. Rev. 103, 403–428 (1996).

    CAS  Article  Google Scholar 

  14. 14

    Craik, F. I. M. & Jennings, J. M. in The Handbook of Aging and Cognition (eds Craik, F. I. M. & Salthouse, T. A.) 51–110 (Lawrence Erlbaum, 1992).

    Google Scholar 

  15. 15

    Laver, G. D. Adult aging effects on semantic and episodic priming in word recognition. Psychol. Aging 24, 28–39 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16

    Carstensen, L. L., Fung, H. F. & Charles, S. T. Socioemotional selectivity theory and the regulation of emotion in the second half of life. Motiv. Emot. 27, 103–123 (2003).

    Article  Google Scholar 

  17. 17

    Carstensen, L. L. et al. Emotional experience improves with age: evidence based on over 10 years of experience sampling. Psychol. Aging 26, 21–33 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18

    Rahhal, T. A., May, C. P. & Hasher, L. Truth and character: sources that older adults can remember. Psychol. Sci. 13, 101–105 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19

    Spreng, R. N., Wojtowicz, M. & Grady, C. L. Reliable differences in brain activity between young and old adults: a quantitative meta-analysis across multiple cognitive domains. Neurosci. Biobehav. Rev. 34, 1178–1194 (2010).

    Article  Google Scholar 

  20. 20

    Eyler, L. T., Sherzai, A., Kaup, A. R. & Jeste, D. V. A review of functional brain imaging correlates of successful cognitive aging. Biol. Psychiatry 70, 115–122 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21

    Grady, C. L. et al. Age-related reductions in human recognition memory due to impaired encoding. Science 269, 218–221 (1995).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22

    Grady, C. L. et al. Age-related changes in cortical blood flow activation during visual processing of faces and location. J. Neurosci. 14, 1450–1462 (1994).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23

    Grady, C. L. Cognitive neuroscience of aging. Ann. NY Acad. Sci. 1124, 127–144 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24

    Logothetis, N. K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25

    Mukamel, R. et al. Coupling between neuronal firing, field potentials, and FMRI in human auditory cortex. Science 309, 951–954 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26

    Aizenstein, H. J. et al. The BOLD hemodynamic response in healthy aging. J. Cogn. Neurosci. 16, 786–793 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27

    Huettel, S. A., Singerman, J. D. & McCarthy, G. The effects of aging upon the hemodynamic response measured by functional MRI. Neuroimage 13, 161–175 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28

    D'Esposito, M., Zarahn, E., Aguirre, G. K. & Rypma, B. The effect of normal aging on the coupling of neural activity to the BOLD hemodynamic response. Neuroimage 10, 6–14 (1999).

    CAS  Article  Google Scholar 

  29. 29

    Buckner, R. L., Snyder, A. Z., Sanders, A. L., Raichle, M. E. & Morris, J. C. Functional brain imaging of young, nondemented, and demented older adults. J. Cogn. Neurosci. 12, 24–34 (2000).

    Article  Google Scholar 

  30. 30

    Hillary, F. G. & Biswal, B. The influence of neuropathology on the FMRI signal: a measurement of brain or vein? Clin. Neuropsychol. 21, 58–72 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31

    D'Esposito, M., Deouell, L. Y. & Gazzaley, A. Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging. Nature Rev. Neurosci. 4, 863–872 (2003).

    CAS  Article  Google Scholar 

  32. 32

    Kannurpatti, S. S., Motes, M. A., Rypma, B. & Biswal, B. B. Neural and vascular variability and the fMRI-BOLD response in normal aging. Magn. Reson. Imag. 28, 466–476 (2010).

    Article  Google Scholar 

  33. 33

    Cabeza, R. et al. Age-related differences in neural activity during memory encoding and retrieval: a positron emission tomography study. J. Neurosci. 17, 391–400 (1997).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34

    Madden, D. J. et al. Adult age differences in the functional neuroanatomy of verbal recognition memory. Hum. Brain Map. 7, 115–135 (1999).

    CAS  Article  Google Scholar 

  35. 35

    Reuter-Lorenz, P. A. et al. Age differences in the frontal lateralization of verbal and spatial working memory revealed by PET. J. Cogn. Neurosci. 12, 174–187 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36

    Davis, S. W., Dennis, N. A., Daselaar, S. M., Fleck, M. S. & Cabeza, R. Que PASA? The posterior-anterior shift in aging. Cereb. Cortex 18, 1201–1209 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37

    Cabeza, R. Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychol. Aging 17, 85–100 (2002). This paper presents a model to explain over-recruitment of the bilateral PFC in older adults and argues that this over-recruitment is compensatory. This idea of bilaterality in ageing is still being assessed in the literature.

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38

    Cabeza, R., Anderson, N. D., Locantore, J. K. & McIntosh, A. R. Aging gracefully: compensatory brain activity in high-performing older adults. Neuroimage 17, 1394–1402 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  39. 39

    McIntosh, A. R. et al. Recruitment of unique neural systems to support visual memory in normal aging. Curr. Biol. 9, 1275–1278 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40

    Della-Maggiore, V. et al. Corticolimbic interactions associated with performance on a short-term memory task are modified by age. J. Neurosci. 20, 8410–8416 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41

    Grady, C. L., McIntosh, A. R. & Craik, F. Task-related activity in prefrontal cortex and its relation to recognition memory performance in young and old adults. Neuropsychologia 43, 1466–1481 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  42. 42

    Zarahn, E., Rakitin, B., Abela, D., Flynn, J. & Stern, Y. Age-related changes in brain activation during a delayed item recognition task. Neurobiol. Aging 28, 784–798 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  43. 43

    Rajah, M. N. & D'Esposito, M. Region-specific changes in prefrontal function with age: a review of PET and fMRI studies on working and episodic memory. Brain 128, 1964–1983 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  44. 44

    Greenwood, P. M. Functional plasticity in cognitive aging: review and hypothesis. Neuropsychology 21, 657–673 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45

    Vallesi, A., McIntosh, A. R. & Stuss, D. T. Overrecruitment in the aging brain as a function of task demands: evidence for a compensatory view. J. Cogn. Neurosci. 23, 801–815 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46

    Vincent, J. L., Kahn, I., Snyder, A. Z., Raichle, M. E. & Buckner, R. L. Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J. Neurophysiol. 100, 3328–3342 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  47. 47

    Corbetta, M., Patel, G. & Shulman, G. L. The reorienting system of the human brain: from environment to theory of mind. Neuron 58, 306–324 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48

    Lee, Y., Grady, C. L., Habak, C., Wilson, H. R. & Moscovitch, M. Face processing changes in normal aging revealed by fMRI adaptation. J. Cogn. Neurosci. 23, 3433–3447 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  49. 49

    Davis, S. W., Kragel, J. E., Madden, D. J. & Cabeza, R. The architecture of cross-hemispheric communication in the aging brain: linking behavior to functional and structural connectivity. Cereb. Cortex 22, 232–242 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  50. 50

    Rossi, S. et al. Age-related functional changes of prefrontal cortex in long-term memory: a repetitive transcranial magnetic stimulation study. J. Neurosci. 24, 7939–7944 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51

    Manenti, R., Cotelli, M. & Miniussi, C. Successful physiological aging and episodic memory: a brain stimulation study. Behav. Brain Res. 216, 153–158 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  52. 52

    Morcom, A. M., Li, J. & Rugg, M. D. Age effects on the neural correlates of episodic retrieval: Increased cortical recruitment with matched performance. Cereb. Cortex 17, 2491–2506 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  53. 53

    Rypma, B., Eldreth, D. A. & Rebbechi, D. Age-related differences in activation-performance relations in delayed-response tasks: a multiple component analysis. Cortex 43, 65–76 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  54. 54

    Stevens, W. D., Hasher, L., Chiew, K. & Grady, C. L. A neural mechanism underlying memory failure in older adults. J. Neurosci. 28, 12820–12824 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. 55

    de Chastelaine, M., Wang, T. H., Minton, B., Muftuler, L. T. & Rugg, M. D. The effects of age, memory performance, and callosal integrity on the neural correlates of successful associative encoding. Cereb. Cortex 21, 2166–2176 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  56. 56

    Persson, J., Kalpouzos, G., Nilsson, L. G., Ryberg, M. & Nyberg, L. Preserved hippocampus activation in normal aging as revealed by fMRI. Hippocampus 21, 753–766 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  57. 57

    Garrett, D. D., Kovacevic, N., McIntosh, A. R. & Grady, C. L. The importance of being variable. J. Neurosci. 31, 4496–4503 (2011). This is one of a series of papers showing that the variability of the fMRI signal is lower in older adults, compared to younger adults, and that less-variable brain signals are associated with greater behavioural variability on cognitive tasks. This is a novel approach to the study of brain function with fMRI.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. 58

    Grady, C. L. et al. A multivariate analysis of age-related differences in default mode and task-positive networks across multiple cognitive domains. Cereb. Cortex 20, 1432–1447 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  59. 59

    Otten, L. J. & Rugg, M. D. Task-dependency of the neural correlates of episodic encoding as measured by fMRI. Cereb. Cortex 11, 1150–1160 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. 60

    Wagner, A. D. et al. Building memories: remembering and forgetting of verbal experiences as predicted by brain activity. Science 281, 1188–1191 (1998).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. 61

    Velanova, K., Lustig, C., Jacoby, L. L. & Buckner, R. L. Evidence for frontally mediated controlled processing differences in older adults. Cereb. Cortex 17, 1033–1046 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  62. 62

    Jimura, K. & Braver, T. S. Age-related shifts in brain activity dynamics during task switching. Cereb. Cortex 20, 1420–1431 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  63. 63

    Dew, I. T., Buchler, N., Dobbins, I. G. & Cabeza, R. Where Is ELSA? The early to late shift in aging. Cereb. Cortex 23 Nov 2011 (doi:10.1093/cercor/bhr334).

    Article  PubMed  PubMed Central  Google Scholar 

  64. 64

    Reuter-Lorenz, P. A. & Cappell, K. A. Neurocognitive aging and the compensation hypothesis. Curr. Direct. Psychol. Sci. 17, 177–182 (2008). This paper presents the CRUNCH model of brain function and ageing, and suggests a mechanism to explain both under and over-recruitment of brain activity in older adults.

    Article  Google Scholar 

  65. 65

    Mattay, V. S. et al. Neurophysiological correlates of age-related changes in working memory capacity. Neurosci. Lett. 392, 32–37 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. 66

    Cappell, K. A., Gmeindl, L. & Reuter-Lorenz, P. A. Age differences in prefontal recruitment during verbal working memory maintenance depend on memory load. Cortex 46, 462–473 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  67. 67

    Schneider-Garces, N. J. et al. Span, CRUNCH, and beyond: working memory capacity and the aging brain. J. Cogn. Neurosci. 22, 655–669 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  68. 68

    Spaniol, J. & Grady, C. Aging and the neural correlates of source memory: over-recruitment and functional reorganization. Neurobiol. Aging 33, 425.e3–425.e18 (2012).

    Article  Google Scholar 

  69. 69

    Lindenberger, U. & Baltes, P. B. Sensory functioning and intelligence in old age: a strong connection. Psychol. Aging 9, 339–355 (1994).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. 70

    Logan, J. M., Sanders, A. L., Snyder, A. Z., Morris, J. C. & Buckner, R. L. Under-recruitment and nonselective recruitment: dissociable neural mechanisms associated with aging. Neuron 33, 827–840 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. 71

    Madden, D. J. et al. Aging and recognition memory: changes in regional cerebral blood flow associated with components of reaction time distributions. J. Cogn. Neurosci. 11, 511–520 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. 72

    Grady, C. L. Age-related differences in face processing: a meta-analysis of three functional neuroimaging experiments. Canad. J. Exp. Psychol. 56, 208–220 (2002).

    Article  Google Scholar 

  73. 73

    Townsend, J., Adamo, M. & Haist, F. Changing channels: an fMRI study of aging and cross-modal attention shifts. Neuroimage 31, 1682–1692 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  74. 74

    Dennis, N. A. & Cabeza, R. Age-related dedifferentiation of learning systems: an fMRI study of implicit and explicit learning. Neurobiol. Aging 33, 2318.e17–2318.e30 (2011).

    Article  Google Scholar 

  75. 75

    Rieckmann, A., Fischer, H. & Backman, L. Activation in striatum and medial temporal lobe during sequence learning in younger and older adults: relations to performance. Neuroimage 50, 1303–1312 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  76. 76

    Carp, J., Gmeindl, L. & Reuter-Lorenz, P. A. Age differences in the neural representation of working memory revealed by multi-voxel pattern analysis. Front. Hum. Neurosci. 4, 217 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  77. 77

    Carp, J., Park, J., Polk, T. A. & Park, D. C. Age differences in neural distinctiveness revealed by multi-voxel pattern analysis. Neuroimage 56, 736–743 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  78. 78

    St-Laurent, M., Abdi, H., Burianov, H. & Grady, C. L. Influence of aging on the neural correlates of autobiographical, episodic, and semantic memory retrieval. J. Cogn. Neurosci. 23, 4150–4163 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  79. 79

    Park, D. C. et al. Aging reduces neural specialization in ventral visual cortex. Proc. Natl Acad. Sci. USA 101, 13091–13095 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  80. 80

    Park, J., Carp, J., Hebrank, A., Park, D. C. & Polk, T. A. Neural specificity predicts fluid processing ability in older adults. J. Neurosci. 30, 9253–9259 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  81. 81

    Grill-Spector, K., Henson, R. & Martin, A. Repetition and the brain: neural models of stimulus-specific effects. Trends Cogn. Sci. 10, 14–23 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  82. 82

    Kanwisher, N. & Yovel, G. The fusiform face area: a cortical region specialized for the perception of faces. Phil. Trans. R. Soc. B 361, 2109–2128 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  83. 83

    Goh, J. O., Suzuki, A. & Park, D. C. Reduced neural selectivity increases fMRI adaptation with age during face discrimination. Neuroimage 51, 336–344 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  84. 84

    Grady, C. L., Charlton, R., He, Y. & Alain, C. Age differences in FMRI adaptation for sound identity and location. Front. Hum. Neurosci. 5, 24 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  85. 85

    McIntosh, A. R. Mapping cognition to the brain through neural interactions. Memory 7, 523–548 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  86. 86

    Horwitz, B. in Visuomotor Coordination (eds Ewert, J.-P. & Arbib, M. A.) 873–892 (Plenum Press, 1989).

    Book  Google Scholar 

  87. 87

    Nagel, I. E. et al. Load modulation of BOLD response and connectivity predicts working memory performance in younger and older adults. J. Cogn. Neurosci. 23, 2030–2045 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  88. 88

    Clapp, W. C., Rubens, M. T., Sabharwal, J. & Gazzaley, A. Deficit in switching between functional brain networks underlies the impact of multitasking on working memory in older adults. Proc. Natl Acad. Sci. USA 108, 7212–7217 (2011). This study suggests the intriguing possibility that older adults show a reduced ability to resolve interference (a type of inhibition deficit) because interfering stimuli disrupt functional connectivity in task-relevant brain networks, which does not return to normal as quickly as in young adults.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  89. 89

    Epstein, R. & Kanwisher, N. A cortical representation of the local visual environment. Nature 392, 598–601 (1998).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  90. 90

    Daselaar, S. M., Fleck, M. S., Dobbins, I. G., Madden, D. J. & Cabeza, R. Effects of healthy aging on hippocampal and rhinal memoryfunctions: an event-related fMRI study. Cereb. Cortex 16, 1771–1782 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  91. 91

    Dennis, N. A. et al. Effects of aging on the neural correlates of successful item and source memory encoding. J. Exp. Psychol. Learn. Mem. Cogn. 34, 791–808 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  92. 92

    St Jacques, P., Dolcos, F. & Cabeza, R. Effects of aging on functional connectivity of the amygdala for subsequent memory of negative pictures: a network analysis of fMRI data. Psychol. Sci. 20, 74–84 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  93. 93

    Addis, D. R., Leclerc, C. M., Muscatell, K. A. & Kensinger, E. A. There are age-related changes in neural connectivity during the encoding of positive, but not negative, information. Cortex 46, 425–433 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  94. 94

    Madden, D. J. et al. Adult age differences in functional connectivity during executive control. Neuroimage 52, 643–657 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  95. 95

    Bollinger, J., Rubens, M. T., Masangkay, E., Kalkstein, J. & Gazzaley, A. An expectation-based memory deficit in aging. Neuropsychologia 49, 1466–1475 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  96. 96

    Gusnard, D. A., Akbudak, E., Shulman, G. L. & Raichle, M. E. Medial prefrontal cortex and self-referential mental activity: Relation to a default mode of brain function. Proc. Natl Acad. Sci. USA 98, 4259–4264 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  97. 97

    Raichle, M. E. et al. A default mode of brain function. Proc. Natl Acad. Sci. USA 98, 676–682 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  98. 98

    Shulman, G. L. et al. Common blood flow changes across visual tasks: decreases in cerebral cortex. J. Cogn. Neurosci. 9, 648–663 (1997).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  99. 99

    Buckner, R. L. & Carroll, D. C. Self-projection and the brain. Trends Cogn. Sci. 11, 49–57 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  100. 100

    Spreng, R. N., Mar, R. A. & Kim, A. S. N. The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. J. Cogn. Neurosci. 21, 489–510 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  101. 101

    Spreng, R. N. & Grady, C. L. Patterns of brain activity supporting autobiographical memory, prospection and theory-of-mind, and their relationship to the default mode network. J. Cogn. Neurosci. 22, 1112–1123 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  102. 102

    Grigg, O. & Grady, C. L. The default network and processing of personally relevant information: converging evidence from task-related modulations and functional connectivity. Neuropsychologia 48, 3815–3823 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  103. 103

    Buckner, R. L., Andrews-Hanna, J. R. & Schacter, D. L. The brain's default network: anatomy, function, and relevance to disease. Ann. NY Acad. Sci. 1124, 1–38 (2008). This review paper presents a comprehensive summary of the DN and the potential relevance of disrupted network function to dementia.

    Article  PubMed  PubMed Central  Google Scholar 

  104. 104

    Fox, M. D. et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl Acad. Sci. USA 102, 9673–9678 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  105. 105

    Andrews-Hanna, J. R. et al. Disruption of large-scale brain systems in advanced aging. Neuron 56, 924–935 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  106. 106

    Damoiseaux, J. S. et al. Reduced resting-state brain activity in the “default network” in normal aging. Cereb. Cortex 18, 1856–1864 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  107. 107

    Esposito, F. et al. Independent component model of the default-mode brain function: combining individual-level and population-level analyses in resting-state fMRI. Magn. Reson. Imag. 26, 905–913 (2008).

    Article  Google Scholar 

  108. 108

    Grady, C. L., Springer, M. V., Hongwanishkul, D., McIntosh, A. R. & Winocur, G. Age-related changes in brain activity across the adult lifespan. J. Cogn. Neurosci. 18, 227–241 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  109. 109

    Lustig, C. et al. Functional deactivations: change with age and dementia of the Alzheimer type. Proc. Natl Acad. Sci. USA 100, 14504–14509 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  110. 110

    Miller, S. L. et al. Age-related memory impairment associated with loss of parietal deactivation but preserved hippocampal activation. Proc. Natl Acad. Sci. USA 105, 2181–2186 (2008).

    CAS  Article  Google Scholar 

  111. 111

    Persson, J., Lustig, C., Nelson, J. K. & Reuter-Lorenz, P. A. Age differences in deactivation: a link to cognitive control? J. Cogn. Neurosci. 19, 1021–1032 (2007).

    Article  Google Scholar 

  112. 112

    Duzel, E., Schutze, H., Yonelinas, A. P. & Heinze, H. J. Functional phenotyping of successful aging in long-term memory: preserved performance in the absence of neural compensation. Hippocampus 21, 803–814 (2011).

    Google Scholar 

  113. 113

    Sambataro, F. et al. Age-related alterations in default mode network: impact on working memory performance. Neurobiol. Aging 31, 839–852 (2010).

    Article  Google Scholar 

  114. 114

    Park, D. C., Polk, T. A., Hebrank, A. C. & Jenkins, L. J. Age differences in default mode activity on easy and difficult spatial judgment tasks. Front. Hum. Neurosci. 3, 75 (2010).

    PubMed  PubMed Central  Google Scholar 

  115. 115

    Hedden, T. et al. Disruption of functional connectivity in clinically normal older adults harboring amyloid burden. J. Neurosci. 29, 12686–12694 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  116. 116

    Allen, E. A. et al. A baseline for the multivariate comparison of resting-state networks. Front. Syst. Neurosci. 5, 2 (2011).

    PubMed  PubMed Central  Google Scholar 

  117. 117

    Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R. & Buckner, R. L. Functional-anatomic fractionation of the brain's default network. Neuron 65, 550–562 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  118. 118

    Wang, L. et al. Intrinsic connectivity between the hippocampus and posteromedial cortex predicts memory performance in cognitively intact older individuals. Neuroimage 51, 910–917 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  119. 119

    McKiernan, K. A., Kaufman, J. N., Kucera-Thompson, J. & Binder, J. R. A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging. J. Cogn. Neurosci. 15, 394–408 (2003).

    Article  Google Scholar 

  120. 120

    Kelly, A. M., Uddin, L. Q., Biswal, B. B., Castellanos, F. X. & Milham, M. P. Competition between functional brain networks mediates behavioral variability. Neuroimage 39, 527–537 (2008).

    Article  Google Scholar 

  121. 121

    Raz, N. et al. Selective aging of human cerebral cortex observed in vivo: differential vulnerability of the prefrontal gray matter. Cereb. Cortex 7, 268–282 (1997).

    CAS  Article  Google Scholar 

  122. 122

    Fjell, A. M. et al. High consistency of regional cortical thinning in aging across multiple samples. Cereb. Cortex 19, 2001–2012 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  123. 123

    Johansen-Berg, H. & Behrens, T. (eds) Diffusion MRI: From Quantitative Measurement to In Vivo Neuroanatomy (Academic Press, 2009).

    Google Scholar 

  124. 124

    Moseley, M. Diffusion tensor imaging and aging — a review. NMR Biomed. 15, 553–560 (2002).

    Article  Google Scholar 

  125. 125

    Sullivan, E. V. & Pfefferbaum, A. Diffusion tensor imaging and aging. Neurosci. Biobehav. Rev. 30, 749–761 (2006).

    Article  Google Scholar 

  126. 126

    Head, D. et al. Differential vulnerability of anterior white matter in nondemented aging with minimal acceleration in dementia of the Alzheimer type: evidence from diffusion tensor imaging. Cereb. Cortex 14, 410–423 (2004).

    Article  Google Scholar 

  127. 127

    Kish, S. J., Zhong, X. H., Hornykiewicz, O. & Haycock, J. W. Striatal 3,4-dihydroxyphenylalanine decarboxylase in aging: disparity between postmortem and positron emission tomography studies? Ann. Neurol. 38, 260–264 (1995).

    CAS  Article  Google Scholar 

  128. 128

    Rinne, J. O., Lonnberg, P. & Marjamaki, P. Age-dependent decline in human brain dopamine D1 and D2 receptors. Brain Res. 508, 349–352 (1990).

    CAS  Article  Google Scholar 

  129. 129

    Walker, L. C. et al. The neural basis of memory decline in aged monkeys. Neurobiol. Aging 9, 657–666 (1988).

    CAS  Article  Google Scholar 

  130. 130

    Meltzer, C. C. et al. Reduced binding of [18F]altanserin to serotonin type 2A receptors in aging: persistence of effect after partial volume correction. Brain Res. 813, 167–171 (1998).

    CAS  Article  Google Scholar 

  131. 131

    Moller, M., Jakobsen, S. & Gjedde, A. Parametric and regional maps of free serotonin 5HT1A receptor sites in human brain as function of age in healthy humans. Neuropsychopharmacology 32, 1707–1714 (2007).

    CAS  Article  Google Scholar 

  132. 132

    Brookmeyer, R., Gray, S. & Kawas, C. Projections of Alzheimer's disease in the United States and the public health impact of delaying disease onset. Am. J. Publ. Health 88, 1337–1342 (1998).

    CAS  Article  Google Scholar 

  133. 133

    Raz, N. in Handbook of Aging and Cognition - II (eds Craik, F. I. M. & Salthouse, T. A.) 1–90 (Lawrence Erlbaum, 2000).

    Google Scholar 

  134. 134

    Kaup, A. R., Mirzakhanian, H., Jeste, D. V. & Eyler, L. T. A review of the brain structure correlates of successful cognitive aging. J. Neuropsychiatry Clin. Neurosci. 23, 6–15 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  135. 135

    Persson, J. et al. Structure-function correlates of cognitive decline in aging. Cereb. Cortex 16, 907–915 (2006).

    Article  Google Scholar 

  136. 136

    Madden, D. J. et al. Adult age differences in the functional neuroanatomy of visual attention: a combined fMRI and DTI study. Neurobiol. Aging 28, 459–476 (2007).

    Article  Google Scholar 

  137. 137

    Salami, A., Eriksson, J., Nilsson, L. G. & Nyberg, L. Age-related white matter microstructural differences partly mediate age-related decline in processing speed but not cognition. Biochim. Biophys. Acta 1822, 408–415 (2012).

    CAS  Article  Google Scholar 

  138. 138

    Davis, S. W. et al. Assessing the effects of age on long white matter tracts using diffusion tensor tractography. Neuroimage 46, 530–541 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  139. 139

    Lockhart, S. et al. Episodic memory function is associated with multiple measures of white matter integrity in cognitive aging. Front. Hum. Neurosci. 6, 56 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  140. 140

    Charlton, R. A., Barrick, T. R., Lawes, I. N., Markus, H. S. & Morris, R. G. White matter pathways associated with working memory in normal aging. Cortex 46, 474–489 (2010).

    Article  Google Scholar 

  141. 141

    Chen, N. K., Chou, Y. H., Song, A. W. & Madden, D. J. Measurement of spontaneous signal fluctuations in fMRI: adult age differences in intrinsic functional connectivity. Brain Struct. Funct. 213, 571–585 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  142. 142

    Thomsen, T. et al. Brain localization of attentional control in different age groups by combining functional and structural MRI. Neuroimage 22, 912–919 (2004).

    Article  Google Scholar 

  143. 143

    Rajah, M., Languay, R. & Grady, C. Age-related changes in right middle frontal gyrus volumes correlate with altered episodic retrieval activity. J. Neurosci. 31, 17941–17954 (2011).

    CAS  Article  Google Scholar 

  144. 144

    Cabeza, R., Ciaramelli, E., Olson, I. R. & Moscovitch, M. The parietal cortex and episodic memory: an attentional account. Nature Rev. Neurosci. 9, 613–625 (2008).

    CAS  Article  Google Scholar 

  145. 145

    Lepage, M., Ghaffar, O., Nyberg, L. & Tulving, E. Prefrontal cortex and episodic memory retrieval mode. Proc. Natl Acad. Sci. USA 97, 506–511 (2000).

    CAS  Article  Google Scholar 

  146. 146

    Kalpouzos, G., Persson, J. & Nyberg, L. Local brain atrophy accounts for functional activity differences in normal aging. Neurobiol. Aging 33, 623.e1–623.e13 (2012).

    Article  Google Scholar 

  147. 147

    Haber, S. N. & Knutson, B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 35, 4–26 (2010).

    Article  Google Scholar 

  148. 148

    Mell, T. et al. Altered function of ventral striatum during reward-based decision making in old age. Front. Hum. Neurosci. 3, 34 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  149. 149

    Samanez-Larkin, G. R. et al. Anticipation of monetary gain but not loss in healthy older adults. Nature Neurosci. 10, 787–791 (2007).

    Article  CAS  Google Scholar 

  150. 150

    Dreher, J. C., Meyer-Lindenberg, A., Kohn, P. & Berman, K. F. Age-related changes in midbrain dopaminergic regulation of the human reward system. Proc. Natl Acad. Sci. USA 105, 15106–15111 (2008).

    CAS  Article  Google Scholar 

  151. 151

    Sambataro, F. et al. Catechol-O-methyltransferase valine 158methionine polymorphism modulates brain networks underlying working memory across adulthood. Biol. Psychiatry 66, 540–548 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  152. 152

    Tunbridge, E. M., Bannerman, D. M., Sharp, T. & Harrison, P. J. Catechol-O-methyltransferase inhibition improves set-shifting performance and elevates stimulated dopamine release in the rat prefrontal cortex. J. Neurosci. 24, 5331–5335 (2004).

    CAS  Article  Google Scholar 

  153. 153

    Backman, L. et al. Dopamine D1 receptors and age differences in brain activation during working memory. Neurobiol. Aging 32, 1849–1856 (2011).

    Article  CAS  Google Scholar 

  154. 154

    Braskie, M. N. et al. Relationship of striatal dopamine synthesis capacity to age and cognition. J. Neurosci. 28, 14320–14328 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  155. 155

    Landau, S. M., Lal, R., O.'Neil, J. P., Baker, S. & Jagust, W. J. Striatal dopamine and working memory. Cereb. Cortex 19, 445–454 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  156. 156

    Braskie, M. N. et al. Correlations of striatal dopamine synthesis with default network deactivations during working memory in younger adults. Hum. Brain Mapp. 32, 947–961 (2011).

    Article  Google Scholar 

  157. 157

    Fischer, H. et al. Simulating neurocognitive aging: effects of a dopaminergic antagonist on brain activity during working memory. Biol. Psychiatry 67, 575–580 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  158. 158

    Morcom, A. M. et al. Memory encoding and dopamine in the aging brain: a psychopharmacological neuroimaging study. Cereb. Cortex 20, 743–757 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  159. 159

    Backman, L., Small, B. J. & Fratiglioni, L. Stability of the preclinical episodic memory deficit in Alzheimer's disease. Brain 124, 96–102 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  160. 160

    Braak, H., Braak, E. & Bohl, J. Staging of Alzheimer-related cortical destruction. Eur. Neurol. 33, 403–408 (1993).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  161. 161

    Strittmatter, W. J. et al. Apolipoprotein E: high-avidity binding to β-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc. Natl Acad. Sci. USA 90, 1977–1981 (1993).

    CAS  Article  Google Scholar 

  162. 162

    Bookheimer, S. Y. et al. Patterns of brain activation in people at risk for Alzheimer's disease. N. Engl. J. Med. 343, 450–456 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  163. 163

    Dickerson, B. C. et al. Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology 65, 404–411 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  164. 164

    Trivedi, M. A. et al. fMRI activation during episodic encoding and metacognitive appraisal across the lifespan: risk factors for Alzheimer's disease. Neuropsychologia 46, 1667–1678 (2008).

    Article  Google Scholar 

  165. 165

    Dennis, N. A. et al. Temporal lobe functional activity and connectivity in young adult APOE ɛ4 carriers. Alzheimers Dement. 6, 303–311 (2010).

    Article  Google Scholar 

  166. 166

    Trivedi, M. A. et al. Reduced hippocampal activation during episodic encoding in middle-aged individuals at genetic risk of Alzheimer's disease: a cross-sectional study. BMC Med. 4, 1 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. 167

    Filippini, N. et al. Differential effects of the APOE genotype on brain function across the lifespan. Neuroimage 54, 602–610 (2011).

    CAS  Article  Google Scholar 

  168. 168

    Smith, J. C. et al. Interactive effects of physical activity and APOE-ɛ4 on BOLD semantic memory activation in healthy elders. Neuroimage 54, 635–644 (2011).

    CAS  Article  Google Scholar 

  169. 169

    Grady, C. L. et al. Longitudinal study of the early neuropsychological and cerebral metabolic changes in dementia of the Alzheimer type. J. Clin. Exp. Neuropsychol. 10, 576–596 (1988).

    CAS  Article  Google Scholar 

  170. 170

    Duara, R. et al. Positron emission tomography in Alzheimer's disease. Neurology 36, 879–887 (1986).

    CAS  Article  Google Scholar 

  171. 171

    Frackowiak, R. S. J. et al. Regional cerebral oxygen supply and utilization in dementia. A clinical and physiological study with oxygen-15 and positron tomography. Brain 104, 753–778 (1981).

    CAS  Article  Google Scholar 

  172. 172

    Petersen, R. C. et al. Alzheimer's Disease Neuroimaging Initiative (ADNI): clinical characterization. Neurology 74, 201–209 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  173. 173

    Filippi, M. & Agosta, F. Structural and functional network connectivity breakdown in Alzheimer's disease studied with magnetic resonance imaging techniques. J. Alzheimers Dis. 24, 455–474 (2011).

    Article  Google Scholar 

  174. 174

    Dickerson, B. C. & Sperling, R. A. Functional abnormalities of the medial temporal lobe memory system in mild cognitive impairment and Alzheimer's disease: insights from functional MRI studies. Neuropsychologia 46, 1624–1635 (2008).

    Article  Google Scholar 

  175. 175

    Yassa, M. A. et al. High-resolution structural and functional MRI of hippocampal CA3 and dentate gyrus in patients with amnestic mild cognitive impairment. Neuroimage 51, 1242–1252 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  176. 176

    Yassa, M. A., Muftuler, L. T. & Stark, C. E. Ultrahigh-resolution microstructural diffusion tensor imaging reveals perforant path degradation in aged humans in vivo. Proc. Natl Acad. Sci. USA 107, 12687–12691 (2010).

    CAS  Article  Google Scholar 

  177. 177

    de Rover, M. et al. Hippocampal dysfunction in patients with mild cognitive impairment: a functional neuroimaging study of a visuospatial paired associates learning task. Neuropsychologia 49, 2060–2070 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  178. 178

    Kochan, N. A. et al. Functional alterations in brain activation and deactivation in mild cognitive impairment in response to a graded working memory challenge. Dement. Geriatr. Cogn. Disord. 30, 553–568 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  179. 179

    Protzner, A. B., Mandzia, J. L., Black, S. E. & McAndrews, M. P. Network interactions explain effective encoding in the context of medial temporal damage in MCI. Hum. Brain Mapp. 32, 1277–1289 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  180. 180

    Greicius, M. D. Sr, ivastava, G., Reiss, A. L. & Menon, V. Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc. Natl Acad. Sci. USA 101, 4637–4642 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  181. 181

    Sala-Llonch, R. et al. Greater default-mode network abnormalities compared to high order visual processing systems in amnestic mild cognitive impairment: an integrated multi-modal MRI study. J. Alzheimers Dis. 22, 523–539 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  182. 182

    Han, S. D. et al. Functional connectivity variations in mild cognitive impairment: associations with cognitive function. J. Int. Neuropsychol. Soc. 18, 39–48 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  183. 183

    Petrella, J. R., Sheldon, F. C., Prince, S. E., Calhoun, V. D. & Doraiswamy, P. M. Default mode network connectivity in stable versus progressive mild cognitive impairment. Neurology 76, 511–517 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  184. 184

    Buckner, R. L. et al. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer's disease. J. Neurosci. 29, 1860–1873 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  185. 185

    Scholz, J., Klein, M. C., Behrens, T. E. & Johansen-Berg, H. Training induces changes in white-matter architecture. Nature Neurosci. 12, 1370–1371 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  186. 186

    Gauthier, I., Skudlarski, P., Gore, J. C. & Anderson, A. W. Expertise for cars and birds recruits brain areas involved in face recognition. Nature Neurosci. 3, 191–197 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  187. 187

    Erickson, K. I. et al. Training-induced plasticity in older adults: effects of training on hemispheric asymmetry. Neurobiol. Aging 28, 272–283 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  188. 188

    Berry, A. S. et al. The influence of perceptual training on working memory in older adults. PLoS ONE 5, e11537 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. 189

    Kirchhoff, B. A., Anderson, B. A., Barch, D. M. & Jacoby, L. L. Cognitive and neural effects of semantic encoding strategy training in older adults. Cereb. Cortex 22, 788–799 (2012). This is one of the few papers to address the effects on the brain of cognitive training in older adults and shows strong evidence that such changes are important for improved behavioural performance.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  190. 190

    Wagner, A. D., Pare-Blagoev, E. J., Clark, J. & Poldrack, R. A. Recovering meaning: left prefrontal cortex guides controlled semantic retrieval. Neuron 31, 329–338 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  191. 191

    Thompson-Schill, S. L. Neuroimaging studies of semantic memory: inferring “how” from “where”. Neuropsychologia 41, 280–292 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  192. 192

    Cabeza, R. & Dennis, N. A. in Principles of Frontal Lobe Function (eds Stuss, D. T. & Knight, R. T.) (Oxford Univ. Press, in the press).

  193. 193

    Nyberg, L. et al. Longitudinal evidence for diminished frontal cortex function in aging. Proc. Natl Acad. Sci. USA 107, 22682–22686 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  194. 194

    Beason-Held, L. L., Kraut, M. A. & Resnick, S. M. I. Longitudinal changes in aging brain function. Neurobiol. Aging 29, 483–496 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  195. 195

    Beason-Held, L. L., Kraut, M. A. & Resnick, S. M. II. Temporal patterns of longitudinal change in aging brain function. Neurobiol. Aging 29, 497–513 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  196. 196

    Thambisetty, M., Beason-Held, L., An, Y., Kraut, M. A. & Resnick, S. M. APOE ɛ4 genotype and longitudinal changes in cerebral blood flow in normal aging. Arch. Neurol. 67, 93–98 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  197. 197

    Weiner, M. W. et al. The Alzheimer's Disease Neuroimaging Initiative: a review of papers published since its inception. Alzheimers Dement. 8, S1–S68 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  198. 198

    Grigg, O. & Grady, C. L. Task-related effects on the temporal and spatial dynamics of resting-state functional connectivity in the default network. PLoS ONE 5, e13311 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. 199

    Krishnan, A., Williams, L. J., McIntosh, A. R. & Abdi, H. Partial Least Squares (PLS) methods for neuroimaging: a tutorial and review. Neuroimage 56, 455–475 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  200. 200

    Power, J. D., Fair, D. A., Schlaggar, B. L. & Petersen, S. E. The development of human functional brain networks. Neuron 67, 735–748 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  201. 201

    Stephan, K. E. et al. Dynamic causal models of neural system dynamics: current state and future extensions. J. Biosci. 32, 129–144 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  202. 202

    Roebroeck, A., Formisano, E. & Goebel, R. Mapping directed influence over the brain using Granger causality and fMRI. Neuroimage 25, 230–242 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  203. 203

    Smith, S. M. et al. The danger of systematic bias in group-level FMRI-lag-based causality estimation. Neuroimage 59, 1228–1229 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  204. 204

    Sperling, R. A. et al. Functional alterations in memory networks in early Alzheimer's disease. Neuromolecular Med. 12, 27–43 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  205. 205

    Van Dijk, K. R., Sabuncu, M. R. & Buckner, R. L. The influence of head motion on intrinsic functional connectivity MRI. Neuroimage 59, 431–438 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  206. 206

    Honey, C. J. et al. Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl Acad. Sci. USA 106, 2035–2040 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  207. 207

    Hagmann, P. et al. Mapping the structural core of human cerebral cortex. PLoS Biol. 6, e159 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. 208

    Greicius, M. D., Supekar, K., Menon, V. & Dougherty, R. F. Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb. Cortex 19, 72–78 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  209. 209

    Luk, G., Bialystok, E., Craik, F. & Grady, C. Lifelong bilingualism maintains white matter integrity in older adults. J. Neurosci. 31, 16808–16813 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  210. 210

    Bialystok, E. & Craik, F. Cognitive and linguistic processing in the bilingual mind. Curr. Direct. Psychol. Sci. 19, 19–23 (2010).

    Article  Google Scholar 

  211. 211

    Mantyla, T. & Backman, L. Encoding variability and age-related retrieval failures. Psychol. Aging 5, 545–550 (1990).

    CAS  Article  Google Scholar 

  212. 212

    Morse, C. K. Does variability increase with age? An archival study of cognitive measures. Psychol. Aging 8, 156–164 (1993).

    CAS  Article  Google Scholar 

  213. 213

    MacDonald, S. W., Nyberg, L. & Backman, L. Intra-individual variability in behavior: links to brain structure, neurotransmission and neuronal activity. Trends Neurosci. 29, 474–480 (2006).

    CAS  Article  Google Scholar 

  214. 214

    Hultsch, D. F., MacDonald, S. W. & Dixon, R. A. Variability in reaction time performance of younger and older adults. J. Gerontol. B Psychol. Sci. Social Sci. 57, P101–P115 (2002).

    Article  Google Scholar 

  215. 215

    West, R., Murphy, K. J., Armilio, M. L., Craik, F. I. & Stuss, D. T. Lapses of intention and performance variability reveal age-related increases in fluctuations of executive control. Brain Cogn. 49, 402–419 (2002).

    Article  Google Scholar 

  216. 216

    Williams, B. R., Hultsch, D. F., Strauss, E. H., Hunter, M. A. & Tannock, R. Inconsistency in reaction time across the life span. Neuropsychology 19, 88–96 (2005).

    Article  Google Scholar 

  217. 217

    Dixon, R. A. et al. Neurocognitive markers of cognitive impairment: exploring the roles of speed and inconsistency. Neuropsychology 21, 381–399 (2007).

    Article  Google Scholar 

  218. 218

    MacDonald, S. W., Hultsch, D. F. & Dixon, R. A. Performance variability is related to change in cognition: evidence from the Victoria Longitudinal Study. Psychol. Aging 18, 510–523 (2003).

    Article  Google Scholar 

  219. 219

    Macdonald, S. W., Hultsch, D. F. & Dixon, R. A. Predicting impending death: inconsistency in speed is a selective and early marker. Psychol. Aging 23, 595–607 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  220. 220

    Arieli, A., Sterkin, A., Grinvald, A. & Aertsen, A. Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273, 1868–1871 (1996). An early landmark study addressing variability in brain activity by showing that intrinsic, ongoing brain activity influences the way in which stimulus-evoked activity is expressed. The authors describe the effect of such stimuli as: “the additional ripples caused by tossing a stone into a wavy sea.”

    CAS  Article  Google Scholar 

  221. 221

    Faisal, A. A., Selen, L. P. & Wolpert, D. M. Noise in the nervous system. Nature Rev. Neurosci. 9, 292–303 (2008).

    CAS  Article  Google Scholar 

  222. 222

    Stein, R. B., Gossen, E. R. & Jones, K. E. Neuronal variability: noise or part of the signal? Nature Rev. Neurosci. 6, 389–397 (2005).

    CAS  Article  Google Scholar 

  223. 223

    Ghosh, A., Rho, Y., McIntosh, A. R., Kotter, R. & Jirsa, V. K. Noise during rest enables the exploration of the brain's dynamic repertoire. PLoS Comput. Biol. 4, e1000196 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. 224

    Basalyga, G. & Salinas, E. When response variability increases neural network robustness to synaptic noise. Neural Comput. 18, 1349–1379 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  225. 225

    Ma, W. J., Beck, J. M., Latham, P. E. & Pouget, A. Bayesian inference with probabilistic population codes. Nature Neurosci. 9, 1432–1438 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  226. 226

    McIntosh, A. R., Kovacevic, N. & Itier, R. J. Increased brain signal variability accompanies lower behavioral variability in development. PLoS Comput. Biol. 4, e1000106 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. 227

    Garrett, D. D., Kovacevic, N., McIntosh, A. R. & Grady, C. L. Blood oxygen level-dependent signal variability is more than just noise. J. Neurosci. 30, 4914–4921 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

C.G.'s research is supported by the Canadian Institutes of Health Research, the Canada Research Chairs program, the Ontario Research Fund and the Canadian Foundation for Innovation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cheryl Grady.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Alzheimer's Disease Neuroimaging Initiative

FURTHER INFORMATION

Cheryl Grady's homepage

Glossary

Working memory

The short-term retention and utilization of information. A classic example is looking up a phone number and remembering it long enough to dial.

Cognitive control

The effortful use of cognitive resources to guide, organize or monitor behaviour.

Implicit memory

Memory without conscious awareness, specifically a change in a person's behaviour (for example, faster reaction times) owing to an experimental manipulation of which they are not aware.

Explicit memory

Conscious retrieval of learned information, such as recalling a list of words that has been previously studied.

Functional connectivity

A measure of how activity within a network of brain regions is correlated, or how activity in a particular brain area is correlated with the rest of the brain.

Delayed match-to-sample task

Presentation of a stimulus (the sample) followed by a delay of several seconds, and then presentation of one or more stimuli that have to be judged as the same or different from the sample.

Default network

(DN). A set of functionally connected brain regions that is involved in spontaneous, internally driven cognitive processes and is more active during periods of rest than during externally driven tasks.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Grady, C. The cognitive neuroscience of ageing. Nat Rev Neurosci 13, 491–505 (2012). https://doi.org/10.1038/nrn3256

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing