Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Socioeconomic status and the brain: mechanistic insights from human and animal research

Abstract

Human brain development occurs within a socioeconomic context and childhood socioeconomic status (SES) influences neural development — particularly of the systems that subserve language and executive function. Research in humans and in animal models has implicated prenatal factors, parent–child interactions and cognitive stimulation in the home environment in the effects of SES on neural development. These findings provide a unique opportunity for understanding how environmental factors can lead to individual differences in brain development, and for improving the programmes and policies that are designed to alleviate SES-related disparities in mental health and academic achievement.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Parental regulation of the hypothalamic–pituitary–adrenal axis.

References

  1. 1

    Adler, N. E. & Rehkopf, D. F. US disparities in health: descriptions, causes and mechanisms. Annu. Rev. Public Health 29, 235–252 (2008).

    PubMed  PubMed Central  Google Scholar 

  2. 2

    Bradley, R. H. & Corwyn, R. F. Socioeconomic status and child development. Annu. Rev. Psychol. 53, 371–399 (2002).

    PubMed  PubMed Central  Google Scholar 

  3. 3

    Brooks-Gunn, J. & Duncan, G. J. The effects of poverty on children. Future Child 7, 55–71 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Conger, R. D. & Donnellan, M. B. An interactionist perspective on the socioeconomic context of human development. Annu. Rev. Psychol. 58, 157–199 (2007).

    Google Scholar 

  5. 5

    Evans, G. W. The environment of childhood poverty. Am. Psychol. 59, 77–92 (2004).

    PubMed  Google Scholar 

  6. 6

    McLoyd, V. C. Socioeconomic disadvantage and child development. Am. Psychol. 53, 185–204 (1998).

    CAS  PubMed  Google Scholar 

  7. 7

    Hackman, D. M. & Farah, M. J. Socioeconomic status and the developing brain. Trends Cogn. Sci. 13, 65–73 (2009).

    PubMed  PubMed Central  Google Scholar 

  8. 8

    Raizada, R. D. & Kishiyama, M. M. Effects of socioeconomic status on brain development, and how cognitive neuroscience may contribute to levelling the playing field. Front. Hum. Neurosci. 4, 3 (2010).

    PubMed  PubMed Central  Google Scholar 

  9. 9

    Shonkoff, J. P., Boyce, W. T. & McEwen, B. S. Neuroscience, molecular biology, and the childhood roots of health disparities building a new framework for health promotion and disease prevention. JAMA 301, 2252–2259 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Braveman, P. A. et al. Socioeconomic status in health research: one size does not fit all. JAMA 294, 2879–2888 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Krieger, N., Williams, D. R. & Moss, N. E. Measuring social class in US public health research: concepts, methodologies, and guidelines. Annu. Rev. Public Health 18, 341–378 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Duncan, G. J., Brooks-Gunn, J. & Klebanov, P. K. Economic deprivation and early childhood development. Child Dev. 65, 296–318 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Noble, K. G., McCandliss, B. D. & Farah, M. J. Socioeconomic gradients predict individual differences in neurocognitive abilities. Dev. Sci. 10, 464–480 (2007).

    PubMed  Google Scholar 

  14. 14

    Sirin, S. R. Socioeconomic status and academic achievement: a meta-analytic review of research. Rev. Educ. Res. 75, 417–453 (2005).

    Google Scholar 

  15. 15

    Merikangas, K. R. et al. Prevalence and treatment of mental disorders among US children in the 2001–2004 NHANES. Pediatrics 125, 75–81 (2010).

    Google Scholar 

  16. 16

    Goodman, E., Slap, G. B. & Huang, B. The public health impact of socioeconomic status on adolescent depression and obesity. Am. J. Public Health 93, 1844–1850 (2003).

    PubMed  PubMed Central  Google Scholar 

  17. 17

    Shanahan, L., Copeland, W., Costello, E. J. & Angold, A. Specificity of putative psychosocial risk factors for psychiatric disorders in children and adolescents. J. Child Psychol. Psychiatry 49, 34–42 (2008).

    PubMed  PubMed Central  Google Scholar 

  18. 18

    Tracy, M., Zimmerman, F. J., Galea, S., McCauley, E. & Vander Stoep, A. What explains the relation between family poverty and childhood depressive symptoms? J. Psychiatr. Res. 42, 1163–1175 (2008).

    PubMed  PubMed Central  Google Scholar 

  19. 19

    National Institute of Child Health and Human Development Early Child Care Research Network. Duration and developmental timing of poverty and children's cognitive and social development from birth through third grade. Child Dev. 76, 795–810 (2005).

  20. 20

    Wadsworth, M. E. & Achenbach, T. M. Explaining the link between low socioeconomic status and psychopathology: testing two mechanisms of the social causation hypothesis. J. Consult. Clin. Psychol. 73, 1146–1153 (2005).

    PubMed  PubMed Central  Google Scholar 

  21. 21

    Korenman, S., Miller, J. E. & Sjaastad, J. E. Long-term poverty and child development in the United States: results from the NLSY. Child. Youth Serv. Rev. 17, 127–155 (1995).

    Google Scholar 

  22. 22

    Duncan, G. J., Yeung, W. J., Brooks-Gunn, J. & Smith, J. R. How much does childhood poverty affect the life chances of children? Am. Sociol. Rev. 63, 406–423 (1998).

    Google Scholar 

  23. 23

    Guo, G. & Mullan-Harris, K. M. The mechanisms mediating the effects of poverty on children's intellectual development. Demography 37, 431–437 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Bowles, S., Gintis, H. & Groves, M. O. (eds) Unequal Chances: Family Background and Economic Success. (Princeton Univ. Press, New Jersey, 2005).

    Google Scholar 

  25. 25

    Farah, M. J. et al. Childhood poverty: specific associations with neurocognitive development. Brain Res. 1110, 166–174 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Noble, K. G., Norman, M. F. & Farah, M. J. Neurocognitive correlates of socioeconomic status in kindergarten children. Dev. Sci. 8, 74–87 (2005).

    PubMed  Google Scholar 

  27. 27

    Kishiyama, M. M., Boyce, W. T., Jimenez, A. M., Perry, L. M. & Knight, R. T. Socioeconomic disparities affect prefrontal function in children. J. Cogn. Neurosci. 21, 1106–1115 (2009).

    PubMed  PubMed Central  Google Scholar 

  28. 28

    Levine, S. C., Vasilyeva, M., Lourenco, S. F., Newcombe, N. S. & Huttonlocher, J. Socioeconomic status modifies the sex difference in spatial skill. Psychol. Sci. 16, 841–845 (2005).

    PubMed  PubMed Central  Google Scholar 

  29. 29

    Herrmann, D. & Guadagno, M. A. Memory performance and socioeconomic status. Appl. Cogn. Psychol. 11, 113–120 (1997).

    Google Scholar 

  30. 30

    Whitehurst, G. J. in Research on Communication and Language Disorders: Contribution to Theories of Language Development (eds Adamson, L. B. & Romski, M. A.) 233–266 (Brookes Publishing, Baltimore, Maryland, 1997).

    Google Scholar 

  31. 31

    Hart, B. & Risley, T. R. Meaningful Differences in the Everyday Experience of Young American Children. (Brookes Publishing, Baltimore, Maryland, 1995).

    Google Scholar 

  32. 32

    Eckert, M. A., Lambardino, L. J. & Leonard, C. M. Planar asymmetry tips the phonological playground and environment raises the bar. Child Dev. 72, 988–1002 (2001).

    CAS  Google Scholar 

  33. 33

    Raizada, R. D. S. et al. Socioeconomic status predicts hemispheric specialization of the left inferior frontal gyrus in young children. Neuroimage 40, 1392–1401 (2008).

    PubMed  PubMed Central  Google Scholar 

  34. 34

    Noble, K. G., Wolmetz, M. E., Ochs, L. G., Farah, M. J. & McCandliss, B. D. Brain–behavior relationships in reading acquisition are modulated by socioeconomic factors. Dev. Sci. 9, 642–654 (2006).

    PubMed  Google Scholar 

  35. 35

    Lipina, S. J., Martelli, M. I., Vuelta, B. & Colombo, J. A. Performance on the A-not-B task of Argentinian infants from unsatisfied and satisfied basic needs homes. Int. J. Psychol. 39, 49–60 (2005).

    Google Scholar 

  36. 36

    Mezzacappa, E. Alterting, orienting, and executive attention: developmental properties and sociodemographic correlates in and epidemiological sample of young, urban children. Child Dev. 75, 1373–1386 (2004).

    Google Scholar 

  37. 37

    Ardila, A. et al. The influence of the parents' educational level on the development of executive functions. Dev. Neuropsychol. 28, 539–560 (2005).

    Google Scholar 

  38. 38

    Howse, R. B., Lange, G., Farran, D. C. & Boyles, C. D. Motivation and self-regulation as predictors of achievement in economically disadvantaged young children. J. Exp. Educ. 71, 151–174 (2003).

    Google Scholar 

  39. 39

    Hughes, C. & Ensor, R. Executive function and theory of mind in 2 year olds: a family affair? Dev. Neuropsychol. 28, 645–668 (2005).

    Google Scholar 

  40. 40

    Waber, D. P. et al. The NIH MRI study of normal brain development: performance of a population based sample of healthy children aged 6 to 18 years on a neuropsychological battery. J. Int. Neuropsychol. Soc. 13, 729–746 (2007).

    Google Scholar 

  41. 41

    Evans, G. W. & Schamberg, M. A. Childhood poverty, chronic stress, and adult working memory. Proc. Natl Acad. Sci. USA 106, 6545–6549 (2009).

    CAS  Google Scholar 

  42. 42

    Engel, P. M. J., Santos, F. H. & Gathercole, S. E. Are working memory measures free of socioeconomic influence? J. Speech Lang. Hear. Res. 51, 1580–1587 (2008).

    Google Scholar 

  43. 43

    Lupien, S. J., King, S., Meaney, M. J. & McEwen, B. S. Can poverty get under your skin? Basal cortisol levels and cognitive function in children from low and high socioeconomic status. Dev. Psychopathol. 13, 653–676 (2001).

    Google Scholar 

  44. 44

    Wiebe, S. A., Espy, K. A. & Charak, D. Using confirmatory factor analysis to understand executive control in preschool children: I. Latent structure. Dev. Psychol. 44, 575–587 (2008).

    Google Scholar 

  45. 45

    Turrell, G. et al. Socioeconomic position across the lifecourse and cognitive function in late middle age. J. Gerontol. B Psychol. Sci. Soc. Sci. 57, S43–S51 (2002).

    Google Scholar 

  46. 46

    D'Angiulli, A., Herdman, A., Stapells, D. & Hertzman, C. Children's event-related potentials of auditory selective attention vary with their socioeconomic status. Neuropsychology 22, 293–300 (2008).

    Google Scholar 

  47. 47

    Stevens, C., Lauinger, B. & Neville, H. Differences in the neural mechanisms of selective attention in children from different socioeconomic backgrounds: an event-related brain potential study. Dev. Sci. 12, 634–646 (2009).

    PubMed  PubMed Central  Google Scholar 

  48. 48

    Tomarken, A. J., Dichter, G. S., Garber, J. & Simien, C. Resting frontal brain activity: linkages to maternal depression and socio-economic status among adolescents. Biol. Psychol. 67, 77–102 (2004).

    Google Scholar 

  49. 49

    Gianaros, P. J. et al. Potential neural embedding of parental social standing. Soc. Cogn. Affect. Neurosci. 3, 91–96 (2008).

    PubMed  PubMed Central  Google Scholar 

  50. 50

    Gianaros, P. J. et al. Perigenual anterior cingulated morphology covaries with perceived social standing. Soc. Cogn. Affect. Neurosci. 2, 161–173 (2007).

    PubMed  PubMed Central  Google Scholar 

  51. 51

    Ochsner, K. N. & Gross, J. J. The cognitive control of emotion. Trends Cogn. Sci. 9, 242–249 (2005).

    Google Scholar 

  52. 52

    Ressler, K. J. & Mayberg, H. S. Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nature Neurosci. 10, 1116–1124 (2007).

    CAS  Google Scholar 

  53. 53

    Buckner, J. C., Mezzacappa, E. & Beardslee, W. R. Characteristics of resilient youths living in poverty: the role of self-regulatory processes. Dev. Psychopathol. 15, 139–162 (2003).

    Google Scholar 

  54. 54

    Lengua, L. J. The contribution of emotionality and self-regulation to the understanding of children's response to multiple risk. Child Dev. 73, 144–161 (2002).

    Google Scholar 

  55. 55

    Duncan, G. J. et al. School readiness and later achievement. Dev. Psychol. 43, 1428–1446 (2007).

    Google Scholar 

  56. 56

    Forget-Dubois, N. et al. Early child language mediates the relation between home environment and school readiness. Child Dev. 80, 736–749 (2009).

    Google Scholar 

  57. 57

    Morgan, A. B. & Lilienfeld, S. O. A meta-analytic review of the relation between antisocial behavior and neuropsychological measures of executive function. Clin. Psychol. Rev. 20, 113–136 (2000).

    CAS  Google Scholar 

  58. 58

    Rogers, R. D. et al. Executive and prefrontal dysfunction in unipolar depression: a review of neuropsychological and imaging evidence. Neurosci. Res. 50, 1–11 (2004).

    Google Scholar 

  59. 59

    Blair, C. & Diamond, A. Biological processes in prevention and intervention: the promotion of self-regulation as a means of preventing school failure. Dev. Psychopathol. 20, 899–911 (2008).

    PubMed  PubMed Central  Google Scholar 

  60. 60

    Dohrenwend, B. P. et al. Socioeconomic status and psychiatric disorders: the causation-selection issue. Science 255, 946–952 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Johnson, J. G., Cohen, P., Dohrenwend, B. P., Link, B. G. & Brook, J. S. A longitudinal investigation of social causation and social selection processes involved in the association between socioeconomic status and psychiatric disorders. J. Abnorm. Psychol. 108, 490–499 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Costello, E. J., Compton, S. N., Keeler, G. & Angold, A. Relationships between poverty and psychopathology: a natural experiment. JAMA 290, 2023–2029 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    South, S. C. & Krueger, R. F. Genetic and environmental influences on internalizing psychopathology vary as a function of economic status. Psychol. Med. 18 Mar 2010 (doi:10.1017/S0033291710000279).

    PubMed  PubMed Central  Google Scholar 

  64. 64

    Nisbett, R. E. Intelligence and How to Get It: Why Schools and Cultures Count (Norton, New York, 2009).

    Google Scholar 

  65. 65

    Capron, C. & Duyme, M. Assessment of effects of socio-economic status on IQ in a full cross-fostering study. Nature 340, 552–554 (1989).

    Google Scholar 

  66. 66

    Turkheimer, E., Haley, A., Waldron, M., D'Onofrio, B. M. & Gottesman, I. I. Socioeconomic status modifies heritability of IQ in young children. Psychol. Sci. 14, 623–628 (2003).

    Google Scholar 

  67. 67

    Friedman, N. P. et al. Individual differences in executive function are almost entirely genetic in origin. J. Exp. Psychol. Gen. 137, 201–225 (2008).

    PubMed  PubMed Central  Google Scholar 

  68. 68

    Lasky-Su, J. et al. A study of how socioeconomic status moderates the relationship between SNPs encompassing BDNF and ADHD symptom counts in ADHD families. Behav. Genet. 37, 487–497 (2007).

    CAS  Google Scholar 

  69. 69

    Manuck, S. B., Flory, J. D., Ferrell, R. E. & Muldoon, M. F. Socio-economic status covaries with central nervous system serotonergic responsivity as a function of allelic variation in the serotonin transporter gene-linked polymorphic region. Psychoneuroendocrinology 29, 651–668 (2004).

    CAS  Google Scholar 

  70. 70

    Diamond, A., Barnett, W. S., Thomas, J. & Munro, S. Preschool program improves cognitive control. Science 318, 1387–1388 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Thorell, L. B., Lindqvist, S., Nutley, S. B., Bohlin, G. & Klingberg, T. Training and transfer effects of executive functions in preschool children. Dev. Sci. 12, 106–113 (2009).

    PubMed  PubMed Central  Google Scholar 

  72. 72

    Spencer, N., Bambang, S., Logans, S. & Gill, L. Socioeconomic status and birth weight: comparison of an area-based measure with the Registrar General's social class. J. Epidemiol. Community Health 53, 495–498 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Bohnert, K. M. & Breslau, N. Stability of psychiatric outcomes of low birth weight: a longitudinal investigation. Arch. Gen. Psychiatry 65, 1080–1086 (2008).

    PubMed  PubMed Central  Google Scholar 

  74. 74

    Strauss, R. S. Adult functional outcome of those born small for gestational age: twenty-six-year follow-up of the 1970 British Birth Cohort. JAMA 283, 625–632 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Meaney, M. J., Szyf, M. & Seckl, J. R. Epigenetic mechanisms of perinatal programming of hypothalamic-pituitary-adrenal function and health. Trends Mol. Med. 13, 269–277 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Schlotz, W. & Phillips, D. I. W. Fetal origins of mental health: evidence and mechanisms. Brain Behav. Immun. 23, 905–916 (2009).

    PubMed  PubMed Central  Google Scholar 

  77. 77

    Jefferis, B. J., Power, C. & Hertzman, C. Birth weight, childhood socioeconomic environment, and cognitive development in the 1958 British birth cohort study. BMJ 325, 305 (2002).

    PubMed  PubMed Central  Google Scholar 

  78. 78

    Seckl, J. R. Glucocorticoids, developmental 'programming' and the risk of affective dysfunction. Prog. Brain Res. 167, 17–34 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Challis, J. R. et al. The fetal placental hypothalamic-pituitary-adrenal (HPA) axis, parturition and post natal health. Mol. Cell. Endocrinol. 185, 135–144 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    McGrath, S. & Smith, R. Prediction of preterm delivery using plasma corticotrophin-releasing hormone and other biochemical variables. Ann. Med. 34, 28–36 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Yeh, T. F. et al. Outcomes at school age after postnatal dexamethasone therapy for lung disease of prematurity. N. Engl. J. Med. 350, 1304–1313 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Buss, C., Meaney, M. J., Lupien, S. & Pruessner, J. Maternal care modulates the relationship between prenatal risk and hippocampal volume. J. Neurosci. 27, 2592–2595 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Murmu, M. S. et al. Changes of spine density and dendritic complexity in the prefrontal cortex in offspring of mothers exposed to stress during pregnancy. Eur. J. Neurosci. 24, 1477–1487 (2006).

    PubMed  PubMed Central  Google Scholar 

  84. 84

    Maccari, S. et al. Prenatal stress and long-term consequences: implications of glucocorticoid hormones. Neurosci. Biobehav. Rev. 27, 119–127 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Weinstock, M. The long-term behavioural consequences of prenatal stress. Neurosci. Biobehav. Rev. 32, 1073–1086 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Glover, V. & O'Connor, T. G. Effects of antenatal stress and anxiety: implications for development and psychiatry. Br. J. Psychiatry 180, 389–391 (2002).

    PubMed  PubMed Central  Google Scholar 

  87. 87

    Barbazanges, A., Piazza, P. V., Le Moal, M. & Maccari, S. Maternal glucocorticoid secretion mediates long-term effects of prenatal stress. J. Neurosci. 16, 3943–3949 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Uno, H., Tarara, R., Else, G., Suleman, M. A. & Sapolsky, R. M. Hippocampal damage associated with prenatal glucocorticoid exposure. J. Neurosci. 9, 1705–1711 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    Schneider, M. L., Moore, C. F., Kraemer, G. W., Roberts, A. D. & DeJesus, O. T. The impact of prenatal stress, fetal alcohol exposure, or both on development: perspectives from a primate model. Psychoneuroendocrinology 27, 285–298 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Matthews, S. G. & Phillips, D. I. W. Minireview: transgenerational inheritance of the stress response: a new frontier in stress research. Endocrinology 151, 7–13 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Linver, M. R., Brooks-Gunn, J. & Kohen, D. E. Family processes as pathways from income to young children's development. Dev. Psychol. 38, 719–734 (2002).

    PubMed  PubMed Central  Google Scholar 

  92. 92

    Grolnick, W. S., Gurland, S. T., DeCourcey, W. & Jacob, K. Antecedents and consequences of mothers' autonomy support: an experimental investigation. Dev. Psychol. 38, 143–155 (2002).

    PubMed  PubMed Central  Google Scholar 

  93. 93

    Belsky, J. & Jaffee, S. in Developmental Psychopathology 2nd edn Vol. 3 (eds Cicchetti, D. & Cohen, D. J.) 38–85 (John Wiley & Sons, Hoboken, New Jersey, 2006).

    Google Scholar 

  94. 94

    Repetti, R. L., Taylor, S. E. & Seeman, T. E. Risky families: family social environments and the mental and physical health of offspring. Psychol. Bull. 128, 330–366 (2002).

    PubMed  PubMed Central  Google Scholar 

  95. 95

    McLoyd, V. C. The impact of economic hardship on Black families and children: psychological distress, parenting, and socioemotional development. Child Dev. 61, 311–346 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Cicchetti, D. & Toth, S. L. Child maltreatment. Annu. Rev. Clin. Psychol. 1, 409–438 (2005).

    PubMed  PubMed Central  Google Scholar 

  97. 97

    O'Connor, T. G., Deater-Deckard, K., Fulker, D., Rutter, M. & Plomin, R. Genotype–environment correlations in late childhood and early adolescence: antisocial behavioral problems and coercive parenting. Dev. Psychol. 34, 970–981 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98

    Gunnar, M. R. & Fisher, P. A. The Early Experience, Stress, and Prevention Science Network. Bringing basic research on early experience and stress neurobiology to bear on preventive interventions for neglected and maltreated children. Dev. Psychopathol. 18, 651–677 (2006).

    PubMed  PubMed Central  Google Scholar 

  99. 99

    Conger, R. D. et al. Economic stress, coercive family process, and developmental problems of adolescents. Child Dev. 30, 467–483 (1994).

    Google Scholar 

  100. 100

    Masten, A. S., Morison, P., Pellegrini, D. & Tellegen, A. in Risk and Protective Factors in the Development of Psychopathology. (eds Rolf, J. E., Marsten, A. S., Cicchett, D., Nuechterlein, K. H. & Weintraub, S.) 236–256 (Cambridge Univ. Press, New York, 1990).

    Google Scholar 

  101. 101

    Van den Boom, D. The influence of temperament and mothering on attachment and exploration: an experimental manipulation of sensitive responsiveness among lower-class mothers and irritable infants. Child Dev. 65, 1457–1477 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102

    Olds, D. et al. Long-term effects of nurse home visitation on children's criminal and antisocial behavior: 15-year follow-up of a randomized controlled trial. JAMA 280, 1238–1244 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103

    Fisher, P. A., Gunnar, M. R., Chamberlain, P. & Reid, J. B. Preventive intervention for maltreated preschool children: impact on children's behavior, neuroendocrine activity and foster parent functioning. J. Am. Acad. Child Adolesc. Psychiatry 39, 1356–1364 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104

    Farah, M. J. et al. Environmental stimulation, parental nurturance and cognitive development in humans. Dev. Sci. 15, 793–801 (2008).

    Google Scholar 

  105. 105

    Rao, H. et al. Early parental care is important for hippocampal maturation: evidence from brain morphology in humans. Neuroimage 49, 1144–1150 (2010).

    PubMed  PubMed Central  Google Scholar 

  106. 106

    Coplan, J. D. et al. Persistent elevations of cerebrospinal fluid concentrations of corticotropin-releasing factor in adult nonhuman primates exposed to early-life stressors: implications for the pathophysiology of mood and anxiety disorders. Proc. Natl Acad. Sci. USA 93, 1619–1623 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107

    Champagne, F. A. & Meaney, M. J. Stress during gestation alters postpartum maternal care and the development of the offspring in a rodent model. Biol. Psychiatry 59, 1227–1235 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    Roth, T. L., Lubin, F. D., Funk, A. J. & Sweatt, J. D. Lasting epigenetic influence of early-life adversity on the BDNF gene. Biol. Psychiatry 65, 760–769 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109

    Caldji, C. et al. Maternal care during infancy regulates the development of neural systems mediating the expression of behavioral fearfulness in adulthood in the rat. Proc. Natl Acad. Sci. USA 95, 5335–5340 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110

    Caldji, C., Diorio, J. & Meaney, M. J. Variations in maternal care alter GABAA receptor subunit expression in brain regions associated with fear. Neuropsychopharmacol. 28, 150–159 (2003).

    Google Scholar 

  111. 111

    Liu, D. et al. Maternal care, hippocampal glucocorticoid receptors and HPA responses to stress. Science 277, 1659–1662 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112

    Francis, D. D., Diorio, J., Liu, D. & Meaney, M. J. Nongenomic transmission across generations in maternal behavior and stress responses in the rat. Science 286, 1155–1158 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113

    Weaver, I. C. G. et al. Epigenetic programming through maternal behavior. Nature Neurosci. 7, 847–854 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114

    Champagne, F. A. Epigenetic mechanisms and the transgenerational effects of maternal care. Front. Neuroendocrinol. 29, 386–397 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115

    Klose, R. J. & Bird, A. P., Genomic DNA methylation: the mark and its mediators. Trends Biochem. Sci. 31, 89–97 (2006).

    CAS  PubMed  Google Scholar 

  116. 116

    Weaver, I. C. G. et al. The transcription factor nerve growth factor-inducible protein a mediates epigenetic programming: altering epigenetic marks by immediate-early genes. J. Neurosci. 27, 1756–1768 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117

    Murgatroyd, C. et al. Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nature Neurosci. 12, 1559–1566 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118

    McGowan, P. O. et al. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nature Neurosci. 12, 342–348 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119

    Liu, D. et al. Maternal care, hippocampal synaptogenesis and cognitive development in rats. Nature Neurosci. 3, 799–806 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120

    Chao, M. V. Neurotrophins and their receptors: a convergence point for many signalling pathways. Nature Rev. Neurosci. 4, 299–309 (2003).

    CAS  Google Scholar 

  121. 121

    Champagne, D. L. et al. Maternal care alters dendritic length, spine density and synaptic potentiation in adulthood. J. Neurosci. 28, 6037–6045 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122

    Bredy, T. W., Zhang, T. Y., Grant, R. J., Diorio, J. & Meaney, M. J. Peripubertal environmental enrichment reverses the effects of maternal care on hippocampal development and glutamate receptor subunit expression. Eur. J. Neurosci. 20, 1355–1362 (2004).

    PubMed  PubMed Central  Google Scholar 

  123. 123

    NICHD Early Child Care Research Network. Child-care effect sizes for the NICHD study of early child care and youth development. Am. Psychol. 61, 99–116 (2006).

  124. 124

    Dubow, E. F. & Ippolito, M. F. Effects of poverty and quality of the home environment on changes in the academic and behavioral adjustment of elementary school-age children. J. Clin. Child Psychol. 23, 401–412 (1994).

    Google Scholar 

  125. 125

    Garrett, P., Ng'andu, N. & Ferron, J. Poverty experiences of young children and the quality of their home environments. Child Dev. 65, 331–345 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126

    Posner, J. K. & Vandell, D. L. Low-income children's after-school care: are there beneficial effects of after-school programs? Child Dev. 65, 440–456 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127

    Reynolds, A. J. Effects of a preschool plus follow-on intervention for children at risk. Dev. Psychol. 30, 787–804 (1994).

    Google Scholar 

  128. 128

    Lee, V. E., Brooks-Gunn, J., Schnur, E. & Liaw, F. Are Head Start effects sustained? A longitudinal follow-up comparison of disadvantaged children attending Head Start, no preschool, and other preschool programs. Child Dev. 61, 495–507 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129

    Seitz, V., Rosenbaum, L. K. & Apfel, N. H. Effects of family support intervention: a ten-year follow-up. Child Dev. 56, 376–391 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130

    Campbell, F. A. & Ramey, C. T. Cognitive and school outcomes for high-risk African-American students at middle adolescence: positive effects of early intervention. Am. Educ. Res. J. 32, 743–772 (1995).

    Google Scholar 

  131. 131

    Campbell, F. A., Pungello, E. P., Miller-Johnson, S., Burchinal, M. & Ramey, C. T. The development of cognitive and academic abilities: growth curves from an early childhood educational experiment. Dev. Psychol. 37, 231–242 (2001).

    CAS  Google Scholar 

  132. 132

    Knudsen, E. I., Heckman, J. J., Cameron, J. L. & Shonkoff, J. P. Economic, neurobiological, and behavioral perspectives on building America's future workforce. Proc. Natl Acad. Sci. USA 103, 10155–10162 (2006).

    CAS  Google Scholar 

  133. 133

    Reynolds, A. J., Ou, S. R. & Magnuson, K. Preschool-to-third grade programs and practices: a review of research. Child. Youth Serv. Rev. 32, 1121–1131 (2010).

    Google Scholar 

  134. 134

    Schweinhart, L. J. Crime prevention by the High/Scope Perry Preschool Program. Victims & Offenders 2, 141–160 (2007).

    Google Scholar 

  135. 135

    Hebb, D. O. The effects of early experience on problem solving at maturity. Am. Psychol. 2, 306–307 (1947).

    Google Scholar 

  136. 136

    Rampon, C. et al. Enrichment induces structural changes and recovery from nonspatial memory deficits in CA1 NMDAR1-knockout mice. Nature Neurosci. 3, 238–244 (2000).

    CAS  Google Scholar 

  137. 137

    van Praag, H., Kempermann, G. & Gage, F. H. Neural consequences of environmental enrichment. Nature Rev. Neurosci. 1, 191–198 (2000).

    CAS  Google Scholar 

  138. 138

    Kempermann, G., Kuhn, H. G. & Gage, F. H. More hippocampal neurons in adult mice living in an enriched environment. Nature 386, 493–495 (1997).

    CAS  PubMed  Google Scholar 

  139. 139

    Sale, A., Berardi, N. & Maffei, L. Enrich the environment to empower the brain. Trends Neurosci. 32, 233–239 (2009).

    CAS  Google Scholar 

  140. 140

    Fernald, L. C. H. et al. Role of cash in conditional cash transfer programmes for child health, growth, and development: an analysis of Mexico's Opportunidades. Lancet 371, 828–837 (2008).

    PubMed  PubMed Central  Google Scholar 

  141. 141

    Weissman, M. M. et al. Remission of maternal depression is associated with reductions in psychopathology in their children: a STAR*D-child report. JAMA 295, 1389–1398 (2006).

    CAS  Google Scholar 

  142. 142

    Farah, M. J. Neuroethics: the practical and the philosophical. Trends Cogn. Sci. 9, 34–40 (2005).

    PubMed  PubMed Central  Google Scholar 

  143. 143

    Surkan, P. J. et al. Neuropsychological function in children with blood lead levels <10 microg/dL. Neurotoxicology 28, 1170–1177 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. 144

    Miranda, M. L. et al. The relationship between early childhood blood lead levels and performance on end-of-grade tests. Environ. Health Perspect. 115, 1242–1247 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. 145

    Gómez-Pinilla, F. Brain foods: the effects of nutrients on brain function. Nature Rev. Neurosci. 9, 568–578 (2008).

    Google Scholar 

  146. 146

    Abma, J. C. & Mott, F. L. Substance use and prenatal care during pregnancy among young women. Fam. Plann. Perspect. 23, 117–128 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. 147

    Caetano, R., Ramisetty-Mikler, S., Floyd, L. R. & McGrath, C. The epidemiology of drinking among women of child-bearing age. Alcohol. Clin. Exp. Res. 30, 1023–1030 (2006).

    PubMed  PubMed Central  Google Scholar 

  148. 148

    Frank, D. A., Augustyn, M., Knight, W. G., Pell, T. & Zuckerman, B. Growth, development, and behavior in early childhood following prenatal cocaine exposure: a systematic review. JAMA 285, 1613–1625 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. 149

    Goodman, E., McEwen, B. S., Dolan, L. M., Schafer-Kalkhoff, T. & Adler, N. E. Social disadvantage and adolescent stress. J. Adolesc. Health 37, 484–492 (2005).

    PubMed  PubMed Central  Google Scholar 

  150. 150

    Sapolsky, R. M. The influence of social hierarchy on primate health. Science 308, 648–652 (2005).

    CAS  Google Scholar 

  151. 151

    Liston, C. et al. Stress-induced alterations in prefrontal corticial dendritic morphology predict selective impairments in perceptual attentional set-shifting. J. Neurosci. 26, 7870–7874 (2006).

    CAS  Google Scholar 

  152. 152

    Liston, C., McEwen, B. S. & Casey, B. J. Psychosocial stress reversibly disrupts prefrontal processing and attentional control. Proc. Natl Acad. Sci. USA 106, 912–917 (2009).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank our funding institutions for their support of our research and in the preparation of this article. M.J.M. was supported by grants from the US National Institute of Health, Child Health and Human Development, the Canadian Institutes for Health Research, the Natural Sciences and Engineering Research Council of Canada and the Hope for Depression Research Foundation. M.J.F and D.A.H were supported by grants from the NICHD (grant R01-HD055689), the US National Institute on Drug Abuse (NIDA grant R01-DA14129), the US Office of Naval Research (grant N000140710034) and the MacArthur Foundation Law and Neuroscience Project. We also thank K. Matula for her assistance with references.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael J. Meaney.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Martha J. Farah's homepage

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hackman, D., Farah, M. & Meaney, M. Socioeconomic status and the brain: mechanistic insights from human and animal research. Nat Rev Neurosci 11, 651–659 (2010). https://doi.org/10.1038/nrn2897

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing